79 resultados para STELLAR ENERGIES
Resumo:
An analysis of radiative transfer effects present in the Fe XV ion stage of solar and stellar coronal plasmas provides a general explanation of line radiation intensity enhancement above the optically thin limit. Full linearization radiation transfer is compared with the escape factor method and found to be in good agreement at the lower column densities. An angular study of the enhancement shows that symmetry factors are of great importance. This gives a possible reason for the indeterminate status of opacity in relation to coronal lines of distant stellar sources, where only emission integrated across the whole surface is detected.
Resumo:
Most of the experimental and theoretical studies of electron-impact ionization of atoms, referred to as (e, 2e), have concentrated on the scattering plane. The assumption has been that all the important physical effects will be observable in the scattering plane. However, very recently it has been shown that, for C6+-helium ionization, experiment and theory are in nice agreement in the scattering plane and in very bad agreement out of the scattering plane. This lack of agreement between experiment and theory has been explained in terms of higher-order scattering effects between the projectile and target ion. We have examined electron-impact ionization of magnesium and have observed similar higher-order effects. The results of the electron-impact ionization of magnesium indicate the possible deficiencies in the calculation of fully differential cross sections in previous heavy particle ionization work.
Resumo:
X-ray spectra of the late-type star AB Dor obtained with the XMM-Newton satellite are analyzed. AB Dor was particularly active during the observations. An emission measure reconstruction technique is employed to analyze flare and quiescent spectra, with emphasis on the Fe XVII 15 - 17 angstrom wavelength region. The Fe XVII 16.78 angstrom/ 15.01 angstrom line ratio increases significantly in the hotter flare plasma. This change in the ratio is opposite to the theoretical predictions and is attributed to the scattering of 15.01 angstrom line photons from the line of sight. The escape probability technique indicates an optical depth of approximate to 0.4 for the 15.01 angstrom line. During the flare, the electron density is 4.4(-1.6)(+2.7) x 10(10) cm(-3), and the fractional Fe abundance is 0.5 +/- 0.1 of the solar photospheric value Using these parameters, a path length of approximate to 8000 km is derived. There is no evidence of opacity in the quiescent X-ray spectrum of the star.
Resumo:
Recent R-matrix calculations of electron impact excitation rates for transitions among the 2s(2)2p(2), 2s2p(3) and 2p(4) levels of Fe XXI are used to derive theoretical electron density (N-e) sensitive emission-line ratios involving 2S2(2)p(2)-2s2p(3) transitions in the similar to 98-146 Angstrom wavelength range. A comparison of these with observations from the PLT tokamak plasma, for which the electron density has been independently determined, reveals generally very good agreement between theory and experiment, and in some instances removes discrepancies found previously. The observed Fe XXI ratios for a solar flare, obtained with the OSO-5 satellite, imply electron densities which are consistent, with discrepancies that do not exceed 0.2 dex. In addition, the derived values of N-e are similar to those estimated for the high-temperature regions of other solar flares. The good agreement between theory and observation, in particular for the tokamak spectra, provides experimental support for the accuracy of the present line-ratio calculations, and hence for the atomic data on which they are based.
Resumo:
An effective frozen core approximation has been developed and applied to the calculation of energy levels and ionization energies of the beryllium atom in magnetic field strengths up to 2.35 x 10(5) T. Systematic improvement over the existing results for the beryllium ground and low-lying states has been accomplished by taking into account most of the correlation effects in the four-electron system. To our knowledge, this is the first calculation of the electronic properties of the beryllium atom in a strong magnetic field carried out using a configuration interaction approximation and thus allowing a treatment beyond that of Hartree-Fock. Differing roles played by strong magnetic fields in intrashell correlation within different states are observed. In addition, possible ways to gain further improvement in the energies of the states of interest are proposed and discussed briefly.
Resumo:
Measurements of electron velocity distributions emitted at 0degrees for collisions of 10- and 20-keV H+ incident ions on H-2 and He show that the electron capture to the continuum cusp formation, which is still possible at these low impact energies, is shifted to lower momenta than its standard position (centered on the projectile velocity), as recently predicted. Classical trajectory Monte Carlo calculations reproduce the observations remarkably well, and indicate that a long-range residual interaction of the electron with the target ion after ionization is responsible for the shifts, which is a general effect that is enhanced at low nuclear velocities.
Resumo:
An analysis is presented of VLT-FLAMES spectroscopy for three Galactic clusters, NGC3293, NGC4755 and NGC6611. Non-LTE model atmosphere calculations have been used to estimate effective temperatures (from either the helium spectrum or the silicon ionization equilibrium) and gravities (from the hydrogen spectrum). Projected rotational velocities have been deduced from the helium spectrum (for fast and moderate rotators) or the metal line spectrum (for slow rotators). The origin of the low gravity estimates for apparently near main sequence objects is discussed and is related to the stellar rotational velocity. The atmospheric parameters have been used to estimate cluster distances (which are generally in good agreement with previous determinations) and these have been used to estimate stellar luminosities and evolutionary masses. The observed Hertzsprung-Russell diagrams are compared with theoretical predictions and some discrepancies including differences in the main sequence luminosities are discussed. Cluster ages have been deduced and evidence for non-coeval star formation is found for all three of the clusters. Projected rotational velocities for targets in the older clusters, NGC3293 and NGC4755, have been found to be systematically larger than those for the field, confirming recent results in other similar age clusters. The distribution of projected rotational velocities are consistent with a Gaussian distribution of intrinsic rotational velocities. For the relatively unevolved targets in the older clusters, NGC3293 and NGC4755, the peak of the velocity distribution would be 250 km s(-1) with a full-width-half-maximum of approximately 180 km s(-1). For NGC6611, the sample size is relatively small but implies a lower mean rotational velocity. This may be evidence for the spin-down effect due to angular momentum loss through stellar winds, although our results are consistent with those found for very young high mass stars. For all three clusters we deduce present day mass functions with Gamma-values in the range of -1.5 to -1.8, which are similar to other young stellar clusters in the Milky Way.
Resumo:
We report here the first detection of hectometer-size objects by the method of serendipitous stellar occultation. This method consists of recording the diffraction shadow created when an object crosses the observer's line of sight and occults the disk of a background star. One of our detections is most consistent with an object between Saturn and Uranus. The two other diffraction patterns detected are caused by Kuiper Belt objects beyond 100 AU from the Sun and hence are the farthest known objects in the solar system. These detections show that the Kuiper Belt is much more extended than previously believed and that the outer part of the disk could be composed of smaller objects than the inner part. This gives critical clues to understanding the problem of the formation of the outer planets of the solar system.
Resumo:
A model is presented for obtaining the step formation energy for metallic islands on (1 1 1) surfaces from Monte Carlo simulations. This model is applied to homo (Cu/Cu(1 1 1), Ag/Ag(1 1 1)) and heteroepitaxy (Ag/Pt(1 1 1)) systems. The embedded atom method is used to represent the interaction between the particles of the system, but any other type of potential could be used as well. The formulation can also be employed to consider the case of other single crystal surfaces, since the higher barriers for atom motion on other surfaces are not a hindrance for the simulation scheme proposed.
Resumo:
The role of optical FeIII absorption lines in B-type stars as iron abundance diagnostics is considered. To date, ultraviolet Fe lines have been widely used in B-type stars, although line blending can severely hinder their diagnostic power. Using optical spectra, covering a wavelength range ~3560-9200Å, a sample of Galactic B-type main-sequence and supergiant stars of spectral types B0.5 to B7 are investigated. A comparison of the observed FeIII spectra of supergiants, and those predicted from the model atmosphere codes TLUSTY [plane-parallel, non-local thermodynamic equilibrium (LTE)], with spectra generated using SYNSPEC (LTE), and CMFGEN (spherical, non-LTE), reveal that non-LTE effects appear small. In addition, a sample of main-sequence and supergiant objects, observed with the Fiber-fed Extended Range Optical Spectrograph (FEROS), reveal LTE abundance estimates consistent with the Galactic environment and previous optical studies. Based on the present study, we list a number of FeIII transitions which we recommend for estimating the iron abundance from early B-type stellar spectra.
Resumo:
Context. The I(15.01 Å)/I(16.78 Å) emission line intensity ratio in Fe xvii has been reported to deviate from its theoretical value
in solar and stellar X-ray spectra. This is attributed to opacity in the 15.01 Å line, leading to a reduction in its intensity, and was
interpreted in terms of a geometry in which the emitters and absorbers are spatially distinct.
Aims. We study the I(15.01 Å)/I(16.78 Å) intensity ratio for the active cool dwarf EV Lac, in both flare and quiescent spectra.
Methods. The observations were obtained with the Reflection Grating Spectrometer on the XMM-Newton satellite. The emission
measure distribution versus temperature reconstruction technique is used for our analysis.
Results. We find that the 15.01 Å line exhibits a significant enhancement in intensity over the optically thin value. To our knowledge,
this is the first time that such an enhancement has been detected on such a sound statistical basis. We interpret this enhancement
in terms of a geometry in which the emitters and absorbers are not spatially distinct, and where the geometry is such that resonant
pumping of the upper level has a greater effect on the observed line intensity than resonant absorption in the line-of-sight.
Resumo:
New fully relativistic calculations of radiative rates and electron impact excitation cross-sections for Fe XVI are used to determine theoretical emission-line ratios applicable to the 251-361 and 32-77 angstrom portions of the extreme-ultraviolet (EUV) and soft X-ray spectral regions, respectively. A comparison of the EUV results with observations from the Solar Extreme-Ultraviolet Research Telescope and Spectrograph (SERTS) reveals excellent agreement between theory and experiment. However, for emission lines in the 32-49 angstrom portion of the soft X-ray spectral region, there are large discrepancies between theory and measurement for both a solar flare spectrum obtained with the X-Ray Spectrometer/Spectrograph Telescope (XSST) and for observations of Capella from the Low- Energy Transmission Grating Spectrometer (LETGS) on the Chandra X-ray Observatory. These are probably due to blending in the solar flare and Capella data from both first-order lines and from shorter wavelength transitions detected in second and third order. By contrast, there is very good agreement between our theoretical results and the XSST and LETGS observations in the 50-77 angstrom wavelength range, contrary to previous results. In particular, there is no evidence that the Fe XVI emission from the XSST flare arises from plasma at a much higher temperature than that expected for Fe XVI in ionization equilibrium, as suggested by earlier work.