18 resultados para SOUTHWEST MONSOON
Resumo:
External climate forcings-such as long-term changes in solar insolation-generate different climate responses in tropical and high latitude regions(1). Documenting the spatial and temporal variability of past climates is therefore critical for understanding how such forcings are translated into regional climate variability. In contrast to the data-richmiddle and high latitudes, high-quality climate-proxy records from equatorial regions are relatively few(2-4), especially from regions experiencing the bimodal seasonal rainfall distribution associated with twice-annual passage of the Intertropical Convergence Zone. Here we present a continuous and well-resolved climate-proxy record of hydrological variability during the past 25,000 years from equatorial East Africa. Our results, based on complementary evidence from seismic-reflection stratigraphy and organic biomarker molecules in the sediment record of Lake Challa near Mount Kilimanjaro, reveal that monsoon rainfall in this region varied at half-precessional (similar to 11,500-year) intervals in phase with orbitally controlled insolation forcing. The southeasterly and northeasterly monsoons that advect moisture from the western Indian Ocean were strengthened in alternation when the inter-hemispheric insolation gradient was at a maximum; dry conditions prevailed when neither monsoon was intensified and modest local March or September insolation weakened the rain season that followed. On sub-millennial timescales, the temporal pattern of hydrological change on the East African Equator bears clear high-northern-latitude signatures, but on the orbital timescale it mainly responded to low-latitude insolation forcing. Predominance of low-latitude climate processes in this monsoon region can be attributed to the low-latitude position of its continental regions of surface air flow convergence, and its relative isolation from the Atlantic Ocean, where prominent meridional overturning circulation more tightly couples low-latitude climate regimes to high-latitude boundary conditions.
Resumo:
Presented here are stable nitrogen isotope data from a rock hyrax (Procavia capensis) middens from northwestern Namibia that record a series of rapid aridification events beginning at ca. 3800 cal yr BP, and which mark a progressive decrease in regional humidity across the Holocene. Strong correlations exist between this record and other terrestrial and marine archives from southern Africa, indicating that the observed pattern of climate change is regionally coherent. Combined, these data indicate hemispheric synchrony in tropical African climate change during the Holocene, with similar trends characterising the termination of the 'African Humid Period' (AHP) in both the northern and southern tropics. These findings run counter to the widely accepted model of direct low-latitude insolation forcing, which requires an antiphase relationship to exist between the hemispheres. The combined dataset highlights: 1) the importance of forcing mechanisms influencing the high northern latitudes in effecting low-latitude climate change in Africa, and 2) the potential importance of solar forcing and variations in the Earth's geomagnetic shield in determining both long-term and rapid centennial-scale climate changes, identifying a possible mechanism for the variations marking the AHP termination in both the southern and northern tropics. (C) 2010 University of Washington. Published by Elsevier Inc. All rights reserved.
Resumo:
An exceptional specimen of the Late Ordovician mollusc ‘Helminthochiton’ thraivensis Reed, from the Katian of the Lady Burn Starfish Beds, southwest Scotland, preserves gut contents that include nine pelmatozoan ossicles. These are interpreted as including two nodal and five intermodal columnals, and two radice ossicles from the attachment structure. The stem was cyclocyclic and heteromorphic, possibly N212. Radice ossicles were wider than the height of nodals, so radice scars must have encroached onto the latera of adjacent pluricolumnals. These features were compared with the 26 known pelmatozoan taxa from the Lady Burn Starfish Beds. Paracrinoids (one species) and glyptocystitid rhombiferans (six species) were discounted as prey because of their cemented attachment, and incorrect columnal morphology and lack of attachment, respectively. Of 19 species of crinoids, eight are discounted in which the column is pentagonal, tetragonal or unknown. Of the remaining eleven species, only the monobathrid camerate Macrostylocrinus cirrifer Ramsbottom satisfies all criteria for identification of the prey, including heteromorphy and radice scars encroaching adjacent internodals.
Resumo:
The late-glacial vegetation development in northern Norway in response to climate changes during the Allerod, Younger Dryas (YD), and the transition to the Holocene is poorly known. Here we present a high-resolution record of floral and vegetation changes at lake Lusvatnet, south-west Andoya, between 13500 and 8000 cal b.p. Plant macrofossil and pollen analyses were done on the same sediment core and the proxy records follow each other very closely. The core has also been analyzed using an ITRAX XRF scanner in order to check the sediment sequence for disturbances or hiatuses. The core has a good radiocarbon-based chronology. The Saksunarvatn tephra fits very well chronostratigraphically. During both the Allerod and the Younger Dryas time-periods arctic vegetation prevailed, dominated by Salix polaris associated with many typically arctic herbs such as Saxifraga cespitosa, Saxifraga rivularis and Oxyria digyna. Both periods were cold and dry. Between 12450 and 12250 cal b.p. during the Younger Dryas chronozone, the assemblage changed, particularly in the increased abundance of Papaver sect. Scapiflora and other high-Arctic herbs, suggesting the development of polar desert vegetation mainly as a response to increased aridity. After 11520 cal b.p. a gradually warmer and more oceanic climate initiated a succession to dwarf-shrub vegetation and the establishment of Betula woodland after 1,000 years at c. 10520 cal b.p. The overall late-glacial aridity contrasts with oceanic conditions in southern Norway and is probably related to sea-ice extent.
Resumo:
Arsenic can be highly toxic to mammals but there is relatively little information on its transfer to and uptake by free-living small mammals. The aim of this study was to determine whether intake and accumulation of arsenic by wild rodents living in arsenic-contaminated habitats reflected environmental levels of contamination and varied between species, sexes and age classes. Arsenic concentrations were measured in soil, litter, wood mice (Apodemus sylvaticus) and bank voles (Clethrionomys glareolus) from six sites which varied in the extent to which they were contaminated. Arsenic residues on the most contaminated sites were three and two orders of magnitude above background in soil and litter, respectively. Arsenic concentrations in the stomach contents, liver, kidney and whole body of small mammals reflected inter-site differences in environmental contamination. Wood mice and bank voles on the same sites had similar concentrations of arsenic in their stomach contents and accumulated comparable residues in the liver, kidney and whole body. Female bank voles, but not wood mice, had significantly higher stomach content and liver arsenic concentrations than males. Arsenic concentration in the stomach contents and body tissues did not vary with age class. The bioaccumulation factor (ratio of arsenic concentration in whole body to that in the diet) in wood mice was not significantly different to that in bank voles and was 0.69 for the two species combined, indicating that arsenic was not bioconcentrated in these rodents. Overall, this study has demonstrated that adult and juvenile wood mice and bank voles are exposed to and accumulate similar amounts of arsenic on arsenic-contaminated mine sites and that the extent of accumulation depends upon the level of habitat contamination.
Resumo:
Evidence is presented from three estuarine tide gauges located in the
Sundarban area of southwest Bangladesh of relative sea level rise
substantially in excess of the generally accepted rates from altimetry, as
well as previous tide-gauge analyses. It is proposed that the difference
arises from the use of relative mean sea level (RMSL) to characterise the
present and future coastal flood hazard, since RMSL can be misleading in
estuaries in which tidal range is changing. Three tide gauges, one located in
the uninhabited mangrove forested area (Sundarban) of southwest
Bangladesh, the others in the densely populated polder zone north of the
present Sundarban, show rates of increase in RMSL ranging from 2.8 mm
a-1 to 8.8 mm a-1. However, these trends in RMSL disguise the fact that high
water levels in the polder zone have been increasing at an average rate of
15.9 mm a-1 and a maximum of 17.2 mm a-1. In an area experiencing tidal
range amplification, RMSL will always underestimate the rise in high water
levels; consequently, as an alternative to RMSL, the use of trends in high
water maxima or ‘Effective Sea Level Rise’ (ESLR) is adopted as a more
strategic parameter to characterise the flooding hazard potential. The rate
of increase in ESLR is shown to be due to a combination of deltaic
subsidence, including sediment compaction, and eustatic sea level rise, but
principally as a result of increased tidal range in estuary channels recently
constricted by embankments. These increases in ESLR have been partially
offset by decreases in fresh water discharge in those estuaries connected
to the Ganges. The recognition of increases of the effective sea level in the
Bangladesh Sundarban, which are substantially greater than increases in
mean sea level, is of the utmost importance to flood management in this
low-lying and densely populated area.
Resumo:
Climate change during the last deglaciation was strongly influenced by the „bipolar seesaw‟, producing antiphase climate responses between the North and South Atlantic. However, mounting evidence demands refinements of this model, with the occurrence of abrupt events in southern low to mid latitudes occurring in-phase with North Atlantic climate. Improved constraints on the north-south phasing and spatial extent of these events are therefore critical to
understanding the mechanisms that propagate abrupt events within the climate system. We present a 19,400 year multi-proxy record of climate change obtained from a rock hyrax midden in southernmost Africa. Arid anomalies in phase with the Younger Dryas and 8.2 ka events are apparent, indicating a clear shift in the influence of the bipolar seesaw, which diminished as the Earth warmed, and was succeeded after ~14.6 ka by the emergence of a dominant interhemispheric atmospheric teleconnection.
Resumo:
Studies of marine sediments, cave speleothemes, annually laminated corals, and tree rings from Asian monsoon regions have added knowledge to our understanding of the factors that control inter-annual to millennial monsoon variability in the past and have provided important constraints for climate modeling scenarios. In contrast, the spatial and temporal pattern of sub-millennial scale monsoon variability and its impact on land cover in SE Asia are still unresolved. This shortcoming stems from the fact that temporally well-resolved paleo-environmental studies are missing from large parts of SE Asia, especially from Thailand. Given that global and regional climate models are increasingly using terrestrial paleo- data to test their performance, past changes in land cover are therefore important variables to better understand feedbacks between different Earth systems. We obtained sediments from Lake Nong Thale Pron, in southern Thailand (8º 10`N, 99 º23`E; 380 m.asl). The aim of our study is to reconstruct lake status changes and to evaluate whether the extent of these changes are linked to known shifts in monsoon intensity and variability. Preliminary results show that lake infilling started more than 15,000 years ago and that the sediments cover the last deglaciation and the Holocene. Current analyses include Itrax XRF core scanning, loss-on-ignition (LOI at 950 and 550ºC), CN elemental and isotopic composition. We expect that our results will be able to give a picture of how the lake's status has changed over time and whether the extent of these changes is linked to known shifts in monsoon intensity and variability.