7 resultados para SOIL MITES


Relevância:

40.00% 40.00%

Publicador:

Resumo:

1. Ecologists are debating the relative role of deterministic and stochastic determinants of community structure. Although the high diversity and strong spatial structure of soil animal assemblages could provide ecologists with an ideal ecological scenario, surprisingly little information is available on these assemblages.
2. We studied species-rich soil oribatid mite assemblages from a Mediterranean beech forest and a grassland. We applied multivariate regression approaches and analysed spatial autocorrelation at multiple spatial scales using Moran's eigenvectors. Results were used to partition community variance in terms of the amount of variation uniquely accounted for by environmental correlates (e.g. organic matter) and geographical position. Estimated neutral diversity and immigration parameters were also applied to a soil animal group for the first time to simulate patterns of community dissimilarity expected under neutrality, thereby testing neutral predictions.
3. After accounting for spatial autocorrelation, the correlation between community structure and key environmental parameters disappeared: about 40% of community variation consisted of spatial patterns independent of measured environmental variables such as organic matter. Environmentally independent spatial patterns encompassed the entire range of scales accounted for by the sampling design (from tens of cm to 100 m). This spatial variation could be due to either unmeasured but spatially structured variables or stochastic drift mediated by dispersal. Observed levels of community dissimilarity were significantly different from those predicted by neutral models.
4. Oribatid mite assemblages are dominated by processes involving both deterministic and stochastic components and operating at multiple scales. Spatial patterns independent of the measured environmental variables are a prominent feature of the targeted assemblages, but patterns of community dissimilarity do not match neutral predictions. This suggests that either niche-mediated competition or environmental filtering or both are contributing to the core structure of the community. This study indicates new lines of investigation for understanding the mechanisms that determine the signature of the deterministic component of animal community assembly.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Although exogenous factors such as pollutants can act on endogenous drivers (e.g. dispersion) of populations and create spatially autocorrelated distributions, most statistical techniques assume independence of error terms. As there are no studies on metal soil pollutants and microarthropods that explicitly analyse this key issue, we completed a field study of the correlation between Oribatida and metal concentrations in litter, organic matter and soil in an attempt to account for spatial patterns of both metals and mites. The 50-m wide study area had homogenous macroscopic features, steep Pb and Cu gradients and high levels of Zn and Cd. Spatial models failed to detect metal-oribatid relationships because the observed latitudinal and longitudinal gradients in oribatid assemblages were independent of the collinear gradients in the concentration of metals. It is therefore hypothesised that other spatially variable factors (e.g. fungi, reduced macrofauna) affect oribatid assemblages, which may be influenced by metals only indirectly. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has long been recognised that dispersal abilities and environmental factors are important in shaping invertebrate communities, but their relative importance for primary soil community assembly has not yet been disentangled. By studying soil communities along chronosequences on four recently emerged nunataks (ice-free land in glacial areas) in Iceland, we replicated environmental conditions spatially at various geographical distances. This allowed us to determine the underlying factors of primary community assembly with the help of metacommunity theories that predict different levels of dispersal constraints and effects of the local environment. Comparing community assembly of the nunataks with that of non-isolated deglaciated areas indicated that isolation of a few kilometres did not affect the colonisation of the soil invertebrates. When accounting for effects of geographical distances, soil age and plant richness explained a significant part of the variance observed in the distribution of the oribatid mites and collembola communities, respectively. Furthermore, null model analyses revealed less co-occurrence than expected by chance and also convergence in the body size ratio of co-occurring oribatids, which is consistent with species sorting. Geographical distances influenced species composition, indicating that the community is also assembled by dispersal, e.g. mass effect. When all the results are linked together, they demonstrate that local environmental factors are important in structuring the soil community assembly, but are accompanied with effects of dispersal that may "override" the visible effect of the local environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed to: (1) assess differences between two quantitative sampling methods of soil microarthropods (visual census vs. stone washing) in ice-free areas located along a latitudinal gradient (from 72 degrees 37'S to 74 degrees 42'S) in northern Victoria Land (Antarctica); (2) furnish preliminary results on the abundance and diversity of mites and springtails in the studied areas. Visual census yielded reliable density estimates for adult collembolans and larger prostigmatic mites but did not detect small species. The study updates the distribution of several mites, including the southernmost record of an Oribatida species at global scale. Species composition was correlated with latitude but the uneven abundance distribution and local high beta-diversity probably reflect habitat fragmentation and population isolation. Under this circumstance nested sampling design should be usefully employed. Priorities and suitable methods for studying terrestrial microarthropod communities in continental Antarctica are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Animal communities are sensitive to environmental disturbance, and several multivariate methods have recently been developed to detect changes in community structure. The complex taxonomy of soil invertebrates constrains the use of the community level in monitoring environmental changes, since species identification requires expertise and time. However, recent literature data on marine communities indicate that little multivariate information is lost in the taxonomic aggregation of species data to high rank taxa. In the present paper, this hypothesis was tested on two oribatid mite (oribatida, Acari) assemblages under two different kinds of disturbance: metal pollution and fires. Results indicate that data sets built at the genus and family systematic rank can detect the effects of disturbance with little loss of information. This is an encouraging result in view of the use of the community level as a preliminary tool for describing patterns of human-disturbed soil ecosystems. (c) 2006 Elsevier SAS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the soil arthropod communities of urban and suburban holm oak (Quercus ilex L.) stands in a small (Siena) and a large Italian city (Naples) and tested whether the abundance and diversity of higher arthropod taxa are affected by the biotic and abiotic conditions of urban forest soils, including pollution. Acarina and Collembola were the dominant taxa in both cities. In Siena the total number of arthropod individuals collected in the samples was over 1/3 greater than in Naples, but all diversity indices scored higher in Naples than in Siena, probably in response to the higher heterogeneity of microclimatic and pedological conditions found in Naples study area. Oribatids resulted twice more abundant in Siena and so were the total mites with respect to Collembola. While “taxonomic richness” per site increased with distance from road traffic, entropy and evenness indices scored higher at the two ends of the impact gradient in both cities. The overall variation in basic pedological and microbiological soil parameters positively correlated with the total abundance of arthropods, and negatively correlated with their taxonomic richness. At the resolution employed, no significant relation emerged between anthropogenic factors, such as traffic load and soil pollution, and the arthropod fauna density and variety. These results are consistent with conclusions drawn from a previous study on the enchytraeid fauna examined at species level, which is remarkable considering the different taxonomic resolutions of the two studies. CCA results suggest that the higher abundance of Oribatid mites, Protura and Thysanura and the lower abundance of Diplopoda and Symphyla in Siena could depend on a higher fungi/bacteria ratio. This observation can be interpreted in terms of differences in fungi and bacteria between the two cities: Siena is shifted towards the fungal decomposition channel, which supports taxa such as oribatid mites, while Naples is shifted towards the bacterial channel, which supports chiefly detritivorous groups, such as diplopods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Beta diversity describes how local communities within an area or region differ in species composition/abundance. There have been attempts to use changes in beta diversity as a biotic indicator of disturbance, but lack of theory and methodological caveats have hampered progress. We here propose that the neutral theory of biodiversity plus the definition of beta diversity as the total variance of a community matrix provide a suitable, novel, starting point for ecological applications. Observed levels of beta diversity (BD) can be compared to neutral predictions with three possible outcomes: Observed BD equals neutral prediction or is larger (divergence) or smaller (convergence) than the neutral prediction. Disturbance might lead to either divergence or convergence, depending on type and strength. We here apply these ideas to datasets collected on oribatid mites (a key, very diverse soil taxon) under several regimes of disturbances. When disturbance is expected to increase the heterogeneity of soil spatial properties or the sampling strategy encompassed a range of diverging environmental conditions, we observed diverging assemblages. On the contrary, we observed patterns consistent with neutrality when disturbance could determine homogenization of soil properties in space or the sampling strategy encompassed fairly homogeneous areas. With our method, spatial and temporal changes in beta diversity can be directly and easily monitored to detect significant changes in community dynamics, although the method itself cannot inform on underlying mechanisms. However, human-driven disturbances and the spatial scales at which they operate are usually known. In this case, our approach allows the formulation of testable predictions in terms of expected changes in beta diversity, thereby offering a promising monitoring tool.