7 resultados para SIGNATURES
Resumo:
The violent merger of two carbon-oxygen white dwarfs has been proposed as a viable progenitor for some Type Ia supernovae. However, it has been argued that the strong ejecta asymmetries produced by this model might be inconsistent with the low degree of polarization typically observed in Type Ia supernova explosions. Here, we test this claim by carrying out a spectropolarimetric analysis for the model proposed by Pakmor et al. for an explosion triggered during the merger of a 1.1 and 0.9 M⊙ carbon-oxygen white dwarf binary system. Owing to the asymmetries of the ejecta, the polarization signal varies significantly with viewing angle. We find that polarization levels for observers in the equatorial plane are modest (≲1 per cent) and show clear evidence for a dominant axis, as a consequence of the ejecta symmetry about the orbital plane. In contrast, orientations out of the plane are associated with higher degrees of polarization and departures from a dominant axis. While the particular model studied here gives a good match to highly polarized events such as SN 2004dt, it has difficulties in reproducing the low polarization levels commonly observed in normal Type Ia supernovae. Specifically, we find that significant asymmetries in the element distribution result in a wealth of strong polarization features that are not observed in the majority of currently available spectropolarimetric data of Type Ia supernovae. Future studies will map out the parameter space of the merger scenario to investigate if alternative models can provide better agreement with observations.
Resumo:
AIMS: Differentiation of heart failure with reduced (HFrEF) or preserved (HFpEF) ejection fraction independent of echocardiography is challenging in the community. Diagnostic strategies based on monitoring circulating microRNA (miRNA) levels may prove to be of clinical value in the near future. The aim of this study was to identify a novel miRNA signature that could be a useful HF diagnostic tool and provide valuable clinical information on whether a patient has HFrEF or HFpEF.
METHODS AND RESULTS: MiRNA biomarker discovery was carried out on three patient cohorts, no heart failure (no-HF), HFrEF, and HFpEF, using Taqman miRNA arrays. The top five miRNA candidates were selected based on differential expression in HFpEF and HFrEF (miR-30c, -146a, -221, -328, and -375), and their expression levels were also different between HF and no-HF. These selected miRNAs were further verified and validated in an independent cohort consisting of 225 patients. The discriminative value of BNP as a HF diagnostic could be improved by use in combination with any of the miRNA candidates alone or in a panel. Combinations of two or more miRNA candidates with BNP had the ability to improve significantly predictive models to distinguish HFpEF from HFrEF compared with using BNP alone (area under the receiver operating characteristic curve >0.82).
CONCLUSION: This study has shown for the first time that various miRNA combinations are useful biomarkers for HF, and also in the differentiation of HFpEF from HFrEF. The utility of these biomarker combinations can be altered by inclusion of natriuretic peptide. MiRNA biomarkers may support diagnostic strategies in subpopulations of patients with HF.
Resumo:
As discussed in Part I, a large accumulation of mammalian faeces at the mire site in the upper Guil Valley near Mt. Viso, dated to 2168cal 14C yr., provides the first evidence of the passage of substantial but indeterminate numbers of mammals within the time frame of the Punic invasion of Italia. Specialized organic biomarkers bound up in a highly convoluted and bioturbated bed constitute an unusual anomaly in a histosol comprised of fibric and hemist horizons that are usually expected to display horizontal bedding. The presence of deoxycholic acid and ethylcoprostanol derived from faecal matter, coupled with high relative numbers of Clostridia 16S rRNA genes, suggests a substantial accumulation of mammalian faeces at the site over 2000years ago. The results reported here constitute the first chemical and biological evidence of the passage of large numbers of mammals, possibly indicating the route of the Hannibalic army at this time. Combined with the geological analysis reported in Part I, these data provide a background supporting the need for further historical archaeological exploration in this area.
Resumo:
Infection with Schistosoma japonicum causes high levels of pathology that is predominantly determined by the cellular and humoral response of the host. However, the specific antibody response that arises during the development of disease is largely undescribed in Asian schistosomiasis-endemic populations. A schistosome protein microarray was used to compare the antibody profiles of subjects with acute infection, with early or advanced disease associated with severe pathology, with chronic infection, and subjects exposed but stool negative for S. japonicum eggs to the antibody profiles of nonexposed controls. Twenty-five immunodominant antigens were identified, including vaccine candidates, tetraspanin-related proteins, transporter molecules, and unannotated proteins. Additionally, individuals with severe pathology had a limited specific antibody response, suggesting that individuals with mild disease may use a broad and strong antibody response, particularly against surface-exposed proteins, to control pathology and/or infection. Our study has identified specific antigens that can discriminate between S. japonicum-exposed groups with different pathologies and may also allow the host to control disease pathology and provide resistance to parasite infection.
Resumo:
Huntington’s disease (HD) is an autosomal neurodegenerative disorder affecting approximately 5-10 persons per 100,000 worldwide. The pathophysiology of HD is not fully understood but the age of onset is known to be highly dependent on the number of CAG triplet repeats in the huntingtin gene. Using 1H NMR spectroscopy this study biochemically profiled 39 brain metabolites in post-mortem striatum (n=14) and frontal lobe (n=14) from HD sufferers and controls (n=28). Striatum metabolites were more perturbed with 15 significantly affected in HD cases, compared with only 4 in frontal lobe (P<0.05; q<0.3). The metabolite which changed most overall was urea which decreased 3.25-fold in striatum (P<0.01). Four metabolites were consistently affected in both brain regions. These included the neurotransmitter precursors tyrosine and L-phenylalanine which were significantly depleted by 1.55-1.58-fold and 1.48-1.54-fold in striatum and frontal lobe, respectively (P=0.02-0.03). They also included L-leucine which was reduced 1.54-1.69-fold (P=0.04-0.09) and myo-inositol which was increased 1.26-1.37-fold (P<0.01). Logistic regression analyses performed with MetaboAnalyst demonstrated that data obtained from striatum produced models which were profoundly more sensitive and specific than those produced from frontal lobe. The brain metabolite changes uncovered in this first 1H NMR investigation of human HD offer new insights into the disease pathophysiology. Further investigations of striatal metabolite disturbances are clearly warranted.
Resumo:
Calculations of synthetic spectropolarimetry are one means to test multidimensional explosion models for Type Ia supernovae. In a recent paper, we demonstrated that the violent merger of a 1.1 and 0.9 M⊙ white dwarf binary system is too asymmetric to explain the low polarization levels commonly observed in normal Type Ia supernovae. Here, we present polarization simulations for two alternative scenarios: the sub-Chandrasekhar mass double-detonation and the Chandrasekhar mass delayed-detonation model. Specifically, we study a 2D double-detonation model and a 3D delayed-detonation model, and calculate polarization spectra for multiple observer orientations in both cases. We find modest polarization levels (<1 per cent) for both explosion models. Polarization in the continuum peaks at ∼0.1–0.3 per cent and decreases after maximum light, in excellent agreement with spectropolarimetric data of normal Type Ia supernovae. Higher degrees of polarization are found across individual spectral lines. In particular, the synthetic Si II λ6355 profiles are polarized at levels that match remarkably well the values observed in normal Type Ia supernovae, while the low degrees of polarization predicted across the O I λ7774 region are consistent with the non-detection of this feature in current data. We conclude that our models can reproduce many of the characteristics of both flux and polarization spectra for well-studied Type Ia supernovae, such as SN 2001el and SN 2012fr. However, the two models considered here cannot account for the unusually high level of polarization observed in extreme cases such as SN 2004dt.