3 resultados para SEX DETERMINATION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protracted or intense rainfall may affect the reproductive success of reptilian species on a number of levels ranging from the availability of prey, the integrity of the nesting site and the subsequent survivability of offspring. For sea turtles (a species displaying temperature sex determination) nesting throughout the tropics and subtropics, rainfall has previously been shown to influence the development environment of clutches; in its extreme resulting in high levels of egg or hatchling mortality. Yet when compared to other abiotic variables affecting clutch success, rainfall has received relatively little attention. We therefore examined how fluctuations in local rainfall at a tropical nesting site for leatherback turtles (Dermochelys coriacea) affected the nest environment. Temperature data loggers placed within clutches (n = 8) revealed that protracted rainfall had a marked cooling effect on nests, so that seasonally improbable male-producing temperatures (

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Allozyme analyses have suggested that Neotropical orchid bee (Euglossini) pollinators are vulnerable because of putative high frequencies of diploid males, a result of loss of sex allele diversity in small hymenopteran populations with single locus complementary sex determination. Our analysis of 1010 males from 27 species of euglossine bees sampled across the Neotropics at 2-11 polymorphic microsatellite loci revealed only 5 diploid males at an overall frequency of 0.005 (95% CIs 0.002-0.010); errors through genetic non-detection of diploid males were likely small. In contrast to allozyme-based studies, we detected very weak or insignificant population genetic structure, even for a pair of populations >500 km apart, possibly accounting for low diploid male frequencies. Technical flaws in previous allozyme-based analyses have probably led to considerable overestimation of diploid male production in orchid bees. Other factors may have a more immediate impact on population persistence than the genetic load imposed by diploid males on these important Neotropical pollinators.