3 resultados para SEPIC impianti fotovoltaici MPPT
Resumo:
This paper proposes a new thermography-based maximum power point tracking (MPPT) scheme to address photovoltaic (PV) partial shading faults. Solar power generation utilizes a large number of PV cells connected in series and in parallel in an array, and that are physically distributed across a large field. When a PV module is faulted or partial shading occurs, the PV system sees a nonuniform distribution of generated electrical power and thermal profile, and the generation of multiple maximum power points (MPPs). If left untreated, this reduces the overall power generation and severe faults may propagate, resulting in damage to the system. In this paper, a thermal camera is employed for fault detection and a new MPPT scheme is developed to alter the operating point to match an optimized MPP. Extensive data mining is conducted on the images from the thermal camera in order to locate global MPPs. Based on this, a virtual MPPT is set out to find the global MPP. This can reduce MPPT time and be used to calculate the MPP reference voltage. Finally, the proposed methodology is experimentally implemented and validated by tests on a 600-W PV array.
Resumo:
System efficiency and cost effectiveness are of critical importance for photovoltaic (PV) systems. This paper addresses the two issues by developing a novel three-port DC-DC converter for stand-alone PV systems, based on an improved Flyback-Forward topology. It provides a compact single-unit solution with a combined feature of optimized maximum power point tracking (MPPT), high step-up ratio, galvanic isolation and multiple operating modes for domestic and aerospace applications. A theoretical analysis is conducted to analyze the operating modes followed by simulation and experimental work. The paper is focused on a comprehensive modulation strategy utilizing both PWM and phase-shifted control that satisfies the requirement of PV power systems to achieve MPPT and output voltage regulation. A 250 W converter was designed and prototyped to provide experimental verification in term of system integration and high conversion efficiency.
Resumo:
As one of key technologies in photovoltaic converter control, Maximum Power Point Tracking (MPPT) methods can keep the power conversion efficiency as high as nearly 99% under the uniform solar irradiance condition. However, these methods may fail when shading conditions occur and the power loss can over as much as 70% due to the multiple maxima in curve in shading conditions v.s. single maximum point in uniformly solar irradiance. In this paper, a Real Maximum Power Point Tracking (RMPPT) strategy under Partially Shaded Conditions (PSCs) is introduced to deal with this kind of problems. An optimization problem, based on a predictive model which will change adaptively with environment, is developed to tracking the global maxima and corresponding adaptive control strategy is presented. No additional circuits are required to obtain the environment uncertainties. Finally, simulations show the effectiveness of proposed method.