31 resultados para River of Grass
Resumo:
A study was undertaken to examine a range of sample preparation and near infrared reflectance spectroscopy (NIPS) methodologies, using undried samples, for predicting organic matter digestibility (OMD g kg(-1)) and ad libitum intake (g kg(-1) W-0.75) of grass silages. A total of eight sample preparation/NIRS scanning methods were examined involving three extents of silage comminution, two liquid extracts and scanning via either external probe (1100-2200 nm) or internal cell (1100-2500 nm). The spectral data (log 1/R) for each of the eight methods were examined by three regression techniques each with a range of data transformations. The 136 silages used in the study were obtained from farms across Northern Ireland, over a two year period, and had in vivo OMD (sheep) and ad libitum intake (cattle) determined under uniform conditions. In the comparisons of the eight sample preparation/scanning methods, and the differing mathematical treatments of the spectral data, the sample population was divided into calibration (n = 91) and validation (n = 45) sets. The standard error of performance (SEP) on the validation set was used in comparisons of prediction accuracy. Across all 8 sample preparation/scanning methods, the modified partial least squares (MPLS) technique, generally minimized SEP's for both OMD and intake. The accuracy of prediction also increased with degree of comminution of the forage and with scanning by internal cell rather than external probe. The system providing the lowest SEP used the MPLS regression technique on spectra from the finely milled material scanned through the internal cell. This resulted in SEP and R-2 (variance accounted for in validation set) values of 24 (g/kg OM) and 0.88 (OMD) and 5.37 (g/kg W-0.75) and 0.77 (intake) respectively. These data indicate that with appropriate techniques NIRS scanning of undried samples of grass silage can produce predictions of intake and digestibility with accuracies similar to those achieved previously using NIRS with dried samples. (C) 1998 Elsevier Science B.V.
Resumo:
Grass biomethane surpasses the 60% greenhouse gas (GHG) savings relative to the fossil fuel replaced required by EU Directive 2009/28/EC. However, there are growing concerns that when the indirect effects of biofuels are taken into account, GHG savings may become negative. There has been no research to date into the indirect effects of grass biomethane; this paper aims to fill that knowledge gap. A causal-descriptive assessment is carried out and identifies the likely indirect effect of a grass biomethane industry in Ireland as a reduction in beef exports to the UK. Three main scenarios are then analyzed: an increase in indigenous UK beef production, an increase in beef imported to the UK from other countries (EU, New Zealand and Brazil), and a decrease in beef consumption leading to increased poultry consumption. The GHG emissions from each of these scenarios are determined and the resulting savings relative to fossil diesel vary between -636% and 102%. The significance of the findings is then discussed. It is the view of the authors that, while consideration of indirect effects is important, an Irish grass biomethane industry cannot be held accountable for the associated emissions. A global GHG accounting system is therefore proposed; however, the difficulty of implementing such a system is acknowledged, as is its probable ineffectualness. Such a system would not treat the source of the problem - rising consumption. The authors conclude that the most effective method of combating the indirect effects of biofuels is a reduction in general consumption. © 2011 Society of Chemical Industry and John Wiley & Sons, Ltd.
Resumo:
Biofuels have had bad press in recent years. There are primarily two distinct issues. The biofuel crops with the best yields (such as sugarcane or oil palm) grow in tropical countries where habitat destruction has occurred in association with the biofuel system. First generation indigenous energy crops commonly used for transport fuel in Europe (such as rapeseed and wheat) have low yields and/or the energy balance of the associated biofuel system is poor. This paper shows that grass is a crop with significant yields and grass biomethane (a gaseous renewable transport biofuel) has a very good energy balance and does not involve habitat destruction, land use change, new farming practices or annual tilling. The gross and net energy production per hectare are almost identical to palm oil biodiesel; the net energy of the grass system is at least 50% better than the next best indigenous European biofuel system investigated. Ten percent of Irish grasslands could fuel over 55% of the Irish private car fleet. © 2009 Elsevier Ltd. All rights reserved.
Resumo:
Nutrient loss from agricultural land following organic fertilizer spreading can lead to eutrophication and poor water quality. The risk of pollution is partly related to the soil water status during and after spreading. In response to these issues, a decision support system (DSS) for nutrient management has been developed to predict when soil and weather conditions are suitable for slurry spreading. At the core of the DSS, the Hybrid Soil Moisture Deficit (HSMD) model estimates soil water status relative to field capacity (FC) for three soil classes (well, moderately and poorly drained) and has potential to predict the occurrence of a transport vector when the soil is wetter than FC. Three years of field observation of volumetric water content was used to validate HSMD model predictions of water status and to ensure correct use and interpretation of the drainage classes. Point HSMD model predictions were validated with respect to the temporal and spatial variations in volumetric water content and soil strength properties. It was found that the HSMD model predictions were well related to topsoil water content through time, but a new class intermediate between poor and moderate, perhaps ‘imperfectly drained’, was needed. With correct allocations of a field into a drainage class, the HSMD model predictions reflect field scale trends in water status and therefore the model is suitable for use at the core of a DSS.
Resumo:
Polybrominated diphenyl ethers (PBDEs) are a group of flame retardants that have been in use since the 1970s. They are included in the list of hazardous substances known as persistent organic pollutants (POPs) because they are extremely hazardous to the environment and human health. PBDEs have been extensively used in industry and manufacturing in Taiwan, thus its citizens are at high risk of exposure to these chemicals.
An assessment of the environmental fate of these compounds in the Zhuoshui river and Changhua County regions of western Taiwan, and also including the adjacent area of the Taiwan Strait, was conducted for three high risk congeners, BDE-47, -99 and -209, to obtain information regarding the partitioning, advection, transfer and long range transport potential of the PBDEs in order to identify the level of risk posed by the pollutants in this region.
The results indicate that large amounts of PBDEs presently reside in all model compartments – air, soil, water, and sediment – with particularly high levels found in air and especially in sediment. The high levels found in sediment, particularly for BDE-209, are significant, since there is the threat of these pollutants entering the food chain, either directly through benthic feeding, or through resuspension and subsequent feeding in the pelagic region of the water column which is a distinct possibility in the strong currents found within the Taiwan Strait. Another important result is that a substantial portion of emissions leave the model domain directly through advection, particularly for BDE-47 (58%) and BDE-209 (75%), thus posing a risk to adjacent communities.
Model results were generally in reasonable agreement with available measured concentrations. In air, model concentrations are in reasonably good agreement with available measured values. For both BDE-47 and -99, model concentrations are a factor of 2-3 higher and BDE-209 within the range of measured values. In soil, model results are somewhat less than measured values. In sediment, model results are at the high end of measured values.
Modelling the effectiveness of grass buffer strips in managing muddy floods under a changing climate
Resumo:
Muddy floods occur when rainfall generates runoff on agricultural land, detaching and transporting sediment into the surrounding natural and built environment. In the Belgian Loess Belt, muddy floods occur regularly and lead to considerable economic costs associated with damage to property and infrastructure. Mitigation measures designed to manage the problem have been tested in a pilot area within Flanders and were found to be cost-effective within three years. This study assesses whether these mitigation measures will remain effective under a changing climate. To test this, the Water Erosion Prediction Project (WEPP) model was used to examine muddy flooding diagnostics (precipitation, runoff, soil loss and sediment yield) for a case study hillslope in Flanders where grass buffer strips are currently used as a mitigation measure. The model was run for present day conditions and then under 33 future site-specific climate scenarios. These future scenarios were generated from three earth system models driven by four representative concentration pathways and downscaled using quantile mapping and the weather generator CLIGEN. Results reveal that under the majority of future scenarios, muddy flooding diagnostics are projected to increase, mostly as a consequence of large scale precipitation events rather than mean changes. The magnitude of muddy flood events for a given return period is also generally projected to increase. These findings indicate that present day mitigation measures may have a reduced capacity to manage muddy flooding given the changes imposed by a warming climate with an enhanced hydrological cycle. Revisions to the design of existing mitigation measures within existing policy frameworks are considered the most effective way to account for the impacts of climate change in future mitigation planning.
Resumo:
Abstract: The potential variance in feedstock costs can have signifi cant implications for the cost of a biofuel and the fi nancial viability of a biofuel facility. This paper employs the Grange Feed Costing Model to assess the cost of on-farm biomethane production using grass silages produced under a range of management scenarios. These costs were compared with the cost of wheat grain and sugarbeet roots for ethanol production at an industrial scale. Of the three feedstocks examined, grass silage represents the cheapest feedstock per GJ of biofuel produced. At a production cost of €27/tonne (t) feedstock (or €150/t volatile solids (VS)), the feedstock production cost of grass silage per gigajoule (GJ) of biofuel (€12.27) is lower than that of sugarbeet (€16.82) and wheat grain (€18.61). Grass biomethane is also the cheapest biofuel when grass silage is costed at the bottom quartile purchase price of silage of €19/t (€93/t VS). However, when considering the production costs (full-costing) of the three feedstocks, the total cost of grass biomethane (€32.37/GJ of biofuel; intensive 2-cut system) from a small on-farm facility ranks between that of sugarbeet (€29.62) and wheat grain ethanol (€34.31) produced in large industrial facilities. The feedstock costs for the above three biofuels represent 0.38, 0.57, and 0.54 of the total biofuel cost. The importance of feedstock cost on biofuel cost is further highlighted by the 0.43 increase in the cost of biomethane when grass silage is priced at the top quartile (€46/t or €232/t VS) compared to the bottom quartile purchase price.
Resumo:
Thermogravimetry (TG) can be used for assessing the compositional differences in grasses that relate to dry matter digestibility (DMD) determined by pepsin-cellulase assay. This investigation developed regression models for predicting DMD of herbage grass during one growing season using TG results. The calibration samples were obtained from a field trial of eight cultivars and two breeding lines. The harvested materials from five cuts were analysed by TG to identify differences in the combustion patterns within the range of 30-600 degrees C. The discrete results including weight loss, peak height, area, temperature, widths and residue of three decomposition peaks were regressed against the measured DMD values of the calibration samples. Similarly, continuous weight loss results of the same samples were also utilised to generate DMD models. The r(2) for validation of the discrete and the best continuous models were 0.90 and 0.95, respectively, and the two calibrations were validated using independent samples from 24 plots from a trial carried out in 2004. The standard error for prediction of the 24 samples by the discrete model (4.14%) was higher than that by the continuous model (2.98%). This study has shown that DMD of grass could be predicted from the TG results. The benefit of thermal analysis is the ability to detect and show changes in composition of cell wall fractions of grasses during different cuts in a year.
Resumo:
The dilute acid hydrolysis of grass and cellulose with phosphoric acid was undertaken in a microwave reactor system. The experimental data and reaction kinetic analysis indicate that this is a potential process for cellulose and hemi-cellulose hydrolysis, due to a rapid hydrolysis reaction at moderate temperatures. The optimum conditions for grass hydrolysis were found to be 2.5% phosphoric acid at a temperature of 175 degrees C. It was found that sugar degradation occurred at acid concentrations greater than 2.5% (v/v) and temperatures greater than 175 degrees C. In a further series of experiments, the kinetics of dilute acid hydrolysis of cellulose was investigated varying phosphoric acid concentration and reaction temperatures. The experimental data indicate that the use of microwave technology can successfully facilitate dilute acid hydrolysis of cellulose allowing high yields of glucose in short reaction times. The optimum conditions gave a yield of 90% glucose. A pseudo-homogeneous consecutive first order reaction was assumed and the reaction rate constants were calculated as: k(1) = 0.0813 s(-1); k(2) = 0.0075 s(-1), which compare favourably with reaction rate constants found in conventional non-microwave reaction systems. The kinetic analysis would indicate that the primary advantages of employing microwave heating were to: achieve a high rate constant at moderate temperatures: and to prevent 'hot spot' formation within the reactor, which would have cause localised degradation of glucose.
Resumo:
Herein batch and continuous mesophilic anaerobic digestion of grass silage liquor was studied. The continuous process was carried out in Armfield digesters with an OLR ranging from 0.851 to 1.77 kg COD m-3 day-1. The effect of recirculation of effluent from the digester was investigated using different OLRs of grass silage liquor feed. These results showed that as the OLR increased, the methane yield decreased for the reactor with no recycle and increased for the reactor with recycle. However, the COD removal for both digesters was nearly the same at the same OLR. Overall these studies show that grass silage liquor can produce a high quality methane steam between 70% and 80% and achieve methane yields of 0.385 m3 kg-1 COD.
Resumo:
Farm incomes in Ireland are in decline and many farmers would operate at a loss in the absence of subsidies. Agriculture is responsible for 27% of Ireland's greenhouse gas emissions and is the largest contributing sector. Penetration of renewable energy in the heat and transport sectors is falling short of targets, and there is no clear plan for achieving them. The anaerobic digestion of grass to produce biogas or biomethane is put forward as a multifaceted solution, which could help meet energy and emissions targets, reduce dependence on imported energy, and provide additional farm income. This paper addresses the economic viability of such a system. Grass biogas/biomethane fares poorly under the current combined heat and power tariff structure, which is geared toward feedstock that attracts a gate fee. Tariff structures similar to those used in other countries are necessary for the industry to develop. Equally, regulation should be implemented to allow injection of biomethane into the gas grid in Ireland. Blends of natural gas and biomethane can be sold, offering a cost-competitive green fuel. Sale as a renewable transport fuel could allow profitability for the farmer and savings for the consumer, but suffers due to the lack of a market. Under current conditions, the most economically viable outlet for grass biomethane is sale as a renewable heating fuel. The key to competitiveness is the existing natural gas infrastructure that enables distribution of grass biomethane, and the renewable energy targets that allow renewable fuels to compete against each other. © 2010 Society of Chemical Industry and John Wiley & Sons, Ltd.
Resumo:
The application of slurry nutrients to land can be associated with unintended losses to the environment depending on soil and weather conditions. Correct timing of slurry application, however, can increase plant nutrient uptake and reduce losses. A decision support system (DSS), which predicts optimum conditions for slurry spreading based on the Hybrid Soil Moisture Deficit (HSMD) model, was investigated for use as a policy tool. The DSS recommendations were compared to farmer perception of suitable conditions for slurry spreading for three soil drainage classes (well, moderate and poorly drained) to better understand on farm slurry management practices and to identify potential conflict with farmer opinion. Six farmers participated in a survey over two and a half years, during which they completed a daily diary, and their responses were compared to Soil Moisture Deficit (SMD) calculations and weather data recorded by on farm meteorological stations. The perception of land drainage quality differed between farmers and was related to their local knowledge and experience. It was found that the allocation of grass fields to HSMD drainage classes using a visual assessment method aligned farmer perception of drainage at the national scale. Farmer opinion corresponded to the theoretical understanding that slurry should not be applied when the soil is wetter than field capacity, i.e. when drainage can occur. While weather and soil conditions (especially trafficability) were the principal reasons given by farmers not to spread slurry, farm management practices (grazing and silage) and current Nitrates Directive policies (closed winter period for spreading) combined with limited storage capacities were obstacles to utilisation of slurry nutrients. Despite the slightly more restrictive advice of the DSS regarding the number of suitable spreading opportunities, the system has potential to address an information deficit that would help farmers to reduce nutrient losses and optimise plant nutrient uptake by improved slurry management. The DSS advice was in general agreement with the farmers and, therefore, they should not be resistant to adopting the tool for day to day management.