39 resultados para Research into design
Resumo:
The UK’s transport infrastructure is one of the most heavily used in the world. The performance of these networks is critically dependent on the performance of cutting and embankment slopes which make up £20B of the £60B asset value of major highway infrastructure alone. The rail network in particular is also one of the oldest in the world: many of these slopes are suffering high incidents of instability (increasing with time). This paper describes the development of a fundamental understanding of earthwork material and system behaviour, through the systematic integration of research across a range of spatial and temporal scales. Spatially these range from microscopic studies of soil fabric, through elemental materials behaviour to whole slope modelling and monitoring and scaling up to transport networks. Temporally, historical and current weather event sequences are being used to understand and model soil deterioration processes, and climate change scenarios to examine their potential effects on slope performance in futures up to and including the 2080s. The outputs of this research are being mapped onto the different spatial and temporal scales of infrastructure slope asset management to inform the design of new slopes through to changing the way in which investment is made into aging assets. The aim ultimately is to help create a more reliable, cost effective, safer and more resilient transport system.
Resumo:
The fourth workshop of the Multidisciplinary European Low Dose Initiative (MELODI) was organised by STUK-Radiation and Nuclear Safety Authority of Finland. It took place from 12 to 14 September 2012 in Helsinki, Finland. The meeting was attended by 179 scientists and professionals engaged in radiation research and radiation protection. We summarise the major scientific findings of the workshop and the recommendations for updating the MELODI Strategic Research Agenda and Road Map for future low dose research activities.
Resumo:
No abstract available
Resumo:
Background: Developing complex interventions for testing in randomised controlled trials is of increasing importance in healthcare planning. There is a need for careful design of interventions for secondary prevention of coronary heart disease (CHD). It has been suggested that integrating qualitative research in the development of a complex intervention may contribute to optimising its design but there is limited evidence of this in practice. This study aims to examine the contribution of qualitative research in developing a complex intervention to improve the provision and uptake of secondary prevention of CHD within primary care in two different healthcare systems.
Methods: In four general practices, one rural and one urban, in Northern Ireland and the Republic of Ireland, patients with CHD were purposively selected. Four focus groups with patients (N = 23) and four with staff (N = 29) informed the development of the intervention by exploring how it could be tailored and integrated with current secondary prevention activities for CHD in the two healthcare settings. Following an exploratory trial the acceptability and feasibility of the intervention were discussed in four focus groups (17 patients) and 10 interviews (staff). The data were analysed using thematic analysis.
Results: Integrating qualitative research into the development of the intervention provided depth of information about the varying impact, between the two healthcare systems, of different funding and administrative arrangements, on their provision of secondary prevention and identified similar barriers of time constraints, training needs and poor patient motivation. The findings also highlighted the importance to patients of stress management, the need for which had been underestimated by the researchers. The qualitative evaluation provided depth of detail not found in evaluation questionnaires. It highlighted how the intervention needed to be more practical by minimising administration, integrating role plays into behaviour change training, providing more practical information about stress management and removing self-monitoring of lifestyle change.
Conclusion: Qualitative research is integral to developing the design detail of a complex intervention and tailoring its components to address individuals' needs in different healthcare systems. The findings highlight how qualitative research may be a valuable component of the preparation for complex interventions and their evaluation.
Resumo:
The number of agents that are potentially effective in the adjuvant treatment of locally advanced resectable colon cancer is increasing. Consequently, it is important to ascertain which subgroups of patients will benefit from a specific treatment. Despite more than two decades of research into the molecular genetics of colon cancer, there is a lack of prognostic and predictive molecular biomarkers with proven utility in this setting. A secondary objective of the Pan European Trials in Adjuvant Colon Cancer-3 trial, which compared irinotecan in combination with 5-fluorouracil and leucovorin in the postoperative treatment of stage III and stage II colon cancer patients, was to undertake a translational research study to assess a panel of putative prognostic and predictive markers in a large colon cancer patient cohort. The Cancer and Leukemia Group B 89803 trial, in a similar design, also investigated the use of prognostic and predictive biomarkers in this setting. In this article, the authors, who are coinvestigators from these trials and performed similar investigations of biomarker discovery in the adjuvant treatment of colon cancer, review the current status of biomarker research in this field, drawing on their experiences and considering future strategies for biomarker discovery in the postgenomic era. The Oncologist 2010; 15: 390-404
Resumo:
In this paper, a multiloop robust control strategy is proposed based on H∞ control and a partial least squares (PLS) model (H∞_PLS) for multivariable chemical processes. It is developed especially for multivariable systems in ill-conditioned plants and non-square systems. The advantage of PLS is to extract the strongest relationship between the input and the output variables in the reduced space of the latent variable model rather than in the original space of the highly dimensional variables. Without conventional decouplers, the dynamic PLS framework automatically decomposes the MIMO process into multiple single-loop systems in the PLS subspace so that the controller design can be simplified. Since plant/model mismatch is almost inevitable in practical applications, to enhance the robustness of this control system, the controllers based on the H∞ mixed sensitivity problem are designed in the PLS latent subspace. The feasibility and the effectiveness of the proposed approach are illustrated by the simulation results of a distillation column and a mixing tank process. Comparisons between H∞_PLS control and conventional individual control (either H∞ control or PLS control only) are also made
Resumo:
The objective of this research was to design granulated iron oxide for the adsorption of heavy metals from wastewater. Polyvinyl acetate (PVAc) was chosen as a suitable binder; as it is water insoluble. Initial experiments on selection of suitable solvent of the polymer were carried out using three solvents namely; methanol, acetone and toluene. Based on the initial tests on product yield and mechanical strength, acetone was selected as the solvent for the polyvinyl acetate binder. Design of experiment was then used to investigate the influence of granulation process variables; impeller speed, binder concentration and liquid to solid ratio on the properties of the granular materials. The response variables in the study were granules mean size, stability in water and granule strength. The results showed that the combination of high impeller speed and high binder concentration favour the formation of strong and stable granules. Results also showed that leaching of the binder into the simulated was water was negligible. Trial adsorption experiments carried out using the strongest and most stable iron oxide granules produced in this work showed removal efficiency of around 70% of synthetic arsenic solutions with initial concentration of 1000 ppb.