57 resultados para Renewable power sources


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth of renewable power sources, distributed generation and the potential for alternative fuelled modes of transport such as electric vehicles has led to concerns over the ability of existing grid systems to facilitate such diverse portfolio mixes in already congested power systems. Internationally the growth in renewable energy sources is driven by government policy targets associated with the uncertainties of fossil fuel supplies, environmental issues and a move towards energy independence. Power grids were traditionally designed as vertically integrated centrally managed entities with fully dispatchable generating plant. Renewable power sources, distributed generation and alternative fuelled vehicles will place these power systems under additional stresses and strains due to their different operational characteristics. Energy storage and smart grid technologies are widely proposed as the tools to integrate these future diverse portfolio mixes within the more conventional power systems. The choice in these technologies is determined not only by their location on the grid system, but by the diversification in the power portfolio mix, the electricity market and the operational demands. This paper presents a high level technical and economic overview of the role and relevance of electrical energy storage and smart grid technologies in the next generation of renewable power systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Power electronics plays an important role in the control and conversion of modern electric power systems. In particular, to integrate various renewable energies using DC transmissions and to provide more flexible power control in AC systems, significant efforts have been made in the modulation and control of power electronics devices. Pulse width modulation (PWM) is a well developed technology in the conversion between AC and DC power sources, especially for the purpose of harmonics reduction and energy optimization. As a fundamental decoupled control method, vector control with PI controllers has been widely used in power systems. However, significant power loss occurs during the operation of these devices, and the loss is often dissipated in the form of heat, leading to significant maintenance effort. Though much work has been done to improve the power electronics design, little has focused so far on the investigation of the controller design to reduce the controller energy consumption (leading to power loss in power electronics) while maintaining acceptable system performance. This paper aims to bridge the gap and investigates their correlations. It is shown a more thoughtful controller design can achieve better balance between energy consumption in power electronics control and system performance, which potentially leads to significant energy saving for integration of renewable power sources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The European Union has set a target of 20% for the share of renewable energy sources in gross final energy consumption in 2020. These renewable energy targets are priority objectives for the Europe 2020 strategy for inclusive growth. In line with the European Union renewable energy policies, the Northern Ireland Executive has a target to deliver 40% renewable electricity by 2020. Currently, Northern Ireland imports 98% of the energy it uses in the form of fossil fuels. Locally produced energy and electricity is needed to ensure sustainable development. The aim of this research is to develop part of a strategy for the mechanical power take-off system for a flap type wave energy converter. Aquamarine Power Ltd’s Oyster flap was the device used for simulation and testing purposes. In this paper the state-of-the-art of wave energy converters is reviewed and a 40th scale test model was developed and built.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Renewable energy generation is expected to continue to increase globally due to renewable energy targets and obligations to reduce greenhouse gas emissions. Some renewable energy sources are variable power sources, for example wind, wave and solar. Energy storage technologies can manage the issues associated with variable renewable generation and align non-dispatchable renewable energy generation with load demands. Energy storage technologies can play different roles in each of the step of the electric power supply chain. Moreover, large scale energy storage systems can act as renewable energy integrators by smoothing the variability. Compressed air energy storage is one such technology. This paper examines the impacts of a compressed air energy storage facility in a pool based wholesale electricity market in a power system with a large renewable energy portfolio.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently wind power is dominated by onshore wind farms. However, as the demand for power grows driven by security of energy supply issues, dwindling fossil fuel supplies and greenhouse gas emissions reduction targets, offshore wind power will develop rapidly because of the decline of viable onshore sites. The United Kingdom has a target of 21% renewable electricity by 2020 and this is expected to come mostly from wind power. Britain is the most active internationally in terms of offshore wind farm development with almost 48GW in some stage of development. In addition the Scottish Government, the Northern Ireland Executive and the Government of Ireland undertook the 'Irish-Scottish Links on Energy Study' (ISLES), which examined the feasibility of creating an offshore interconnected transmission network and subsea electricity grid based on renewable energy sources off the coast of western Scotland and the Irish Sea. The aim of this paper is to provide an appraisal of offshore wind power development with a focus on the United Kingdom. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At least 34 % of the United Kingdom’s power must come from renewable energy sources to meet planned European Union targets in 2030. Wind power will provide the majority of this renewable electricity with an estimated 36 GW offshore and 21 GW onshore. The success of the Crown Estate’s leasing rounds 1 and 2 in offshore wind has meant the United Kingdom is now one of the world leaders in offshore wind power development. Leasing round 3 will see offshore wind in the United Kingdom surpass 36 GW of installed capacity. This is a significant increase from the current installed offshore wind capacity of 3.6 GW. This research investigates the power system performance of offshore wind power in the United Kingdom in 2030.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Future power systems are expected to integrate large-scale stochastic and intermittent generation and load due to reduced use of fossil fuel resources, including renewable energy sources (RES) and electric vehicles (EV). Inclusion of such resources poses challenges for the dynamic stability of synchronous transmission and distribution networks, not least in terms of generation where system inertia may not be wholly governed by large-scale generation but displaced by small-scale and localised generation. Energy storage systems (ESS) can limit the impact of dispersed and distributed generation by offering supporting reserve while accommodating large-scale EV connection; the latter (load) also participating in storage provision. In this paper, a local energy storage system (LESS) is proposed. The structure, requirement and optimal sizing of the LESS are discussed. Three operating modes are detailed, including: 1) storage pack management; 2) normal operation; and 3) contingency operation. The proposed LESS scheme is evaluated using simulation studies based on data obtained from the Northern Ireland regional and residential network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Utilization of renewable energy sources and energy storage systems is increasing with fostering new policies on energy industries. However, the increase of distributed generation hinders the reliability of power systems. In order to stabilize them, a virtual power plant emerges as a novel power grid management system. The VPP has a role to make a participation of different distributed energy resources and energy storage systems. This paper defines core technology of the VPP which are demand response and ancillary service concerning about Korea, America and Europe cases. It also suggests application solutions of the VPP to V2G market for restructuring national power industries in Korea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies have shown that large geographical spreading can reduce the wind power variability and smooth production. It is frequently assumed that storage and interconnection can manage wind power variability and are totally flexible. However, constraints do exist. In the future more and more electricity will be provided by renewable energy sources and more electricity interconnectors will be built between European Union (EU) countries, as outlines in many of the Projects of Common Interests. It is essential to understand the correlation of wind generation throughout Europe considering power system constraints. In this study the spatial and temporal correlation of wind power production across several countries is examined in order to understand how “the wind ‘travels’ across Europe”. Three years of historical hourly wind power generation from ten EU countries is analysed to investigate the geographic diversity and time scales influence on correlation of wind power variations. Results are then compared with two other studies and show similar general characteristics of correlation between EU country pairs to identify opportunities for storage optimisation, power system operations, and trading.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The global increase in the penetration of renewable energy is pushing electrical power systems into uncharted territory, especially in terms of transient and dynamic stability. In particular, the greater penetration of wind generation in European power networks is, at times, displacing a significant capacity of conventional synchronous generation with fixed-speed induction generation and now more commonly, doubly fed induction generators. The impact of such changes in the generation mix requires careful monitoring to assess the impact on transient and dynamic stability. This study presents a measurement-based method for the early detection of power system oscillations, with consideration of mode damping, in order to raise alarms and develop strategies to actively improve power system dynamic stability and security. A method is developed based on wavelet-based support vector data description (SVDD) to detect oscillation modes in wind farm output power, which may excite dynamic instabilities in the wider system. The wavelet transform is used as a filter to identify oscillations in frequency bands, whereas the SVDD method is used to extract dominant features from different scales and generate an assessment boundary according to the extracted features. Poorly damped oscillations of a large magnitude, or that are resonant, can be alarmed to the system operator, to reduce the risk of system instability. The proposed method is exemplified using measured data from a chosen wind farm site.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Polymer based carbon aerogels were prepared by synthesis of a resorcinol formaldehyde gel followed by pyrolysis at 1073K under Ar and activation of the resultant carbon under CO2 at different temperatures. The prepared carbon aerogels were used as active materials in the preparation of cathode electrodes for lithium oxygen cells and the electrochemical performance of the cells was evaluated by galvanostatic charge/discharge cycling and electrochemical impedance measurements. It was shown that the storage capacity and discharge voltage of a Li/O2 cell strongly depend on the porous structure of the carbon used in cathode. EIS results also showed that the shape and value of the resistance in the impedance spectrum of a Li/O2 cell are strongly affected by the porosity of carbon used in the cathode. Porosity changes due to the build up of discharge products hinder the oxygen and lithium ion transfer into the electrode, resulting in a gradual increase in the cell impedance with cycling. The discharge capacity and cycle life of the battery decrease significantly as its internal resistance increases with charge/discharge cycling.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An electrochemical double layer capacitor test cell containing activated carbon xerogel electrodes and ionic liquid electrolyte was tested at 15, 25 and 40 OC to examine the effect of temperature on electrolyte resistance (RS) and equivalent series resistance (ESR) measured using impedance spectroscopy and capacitance using charge/discharge cycling. A commercial 10F capacitor was used as a comparison. Viscosity, ionic self-diffusion coefficients and differential scanning calorimetry measurements were used to provide an insight into the behaviour of the 1,2-dimethyl-3-propylimdazolium electrolyte. Both RS and ESR decreased with increasing temperature for both capacitors. Increasing the temperature also increased the capacitance for both the test cell and the commercial capacitor but proportionally more for the test cell. An increase in temperature decreased the ionic liquid electrolyte viscosity and increased the self diffusion coefficients of both the anion and the cation indicating an increase in dissociation and increase in ionic mobility.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The rapid increase in electricity demand in Chile means a choice must be made between major investments in renewable or non-renewable sources for additional production. Current projects to develop large dams for hydropower in Chilean Patagonia impose an environmental price by damaging the natural environment. On the other hand, the increased use of fossil fuels entails an environmental price in terms of air pollution and greenhouse gas emissions contributing to climate change. This paper studies the debate on future electricity supply in Chile by investigating the preferences of households for a variety of different sources of electricity generation such as fossil fuels, large hydropower in Chilean Patagonia and other renewable energy sources. Using Double Bounded Dichotomous Choice Contingent Valuation, a novel advanced disclosure method and internal consistency test are used to elicit the willingness to pay for less environmentally damaging sources. Policy results suggest a strong preference for renewable energy sources with higher environmental prices imposed by consumers on electricity generated from fossil fuels than from large dams in Chilean Patagonia. Policy results further suggest the possibility of introducing incentives for renewable energy developments that would be supported by consumers through green tariffs or environmental premiums. Methodological findings suggest that advanced disclosure learning overcomes the problem of internal inconsistency in SB-DB estimates.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Installed wind capacity in the European Union is expected to continue to increase due to renewable energy targets and obligations to reduce greenhouse gas emissions. Renewable energy sources such as wind power are variable sources of power. Energy storage technologies are useful to manage the issues associated with variable renewable energy sources and align non-dispatchable renewable energy generation with load demands. Energy storage technologies can play different roles in electric power systems and can be used in each of the steps of the electric power supply chain. Moreover, large scale energy storage systems can act as renewable energy integrators by smoothening the variability of large penetrations of wind power. Compress Air Energy Storage is one such technology. The aim of this paper is to examine the technical and economic feasibility of a combined gas storage and compressed air energy storage facility in the all-island Single Electricity Market of Northern Ireland and the Republic of Ireland in order to optimise power generation and wind power integration. This analysis is undertaken using the electricity market software PLEXOS ® for power systems by developing a model of a combined facility in 2020.