4 resultados para Reliability benefit reflective transmission pricing
Resumo:
The blood pressure waveform is modified on distal propagation by phenomena such as dispersion, reflection and the state of the arterial compliance. The consequent effects are amplification and narrowing of the wave, with an increased systolic, reduced diastolic and essentially unaltered mean blood pressure. The Finapres measures the peripheral pressure using the volume clamp principle; it has not been validated under altered physiological conditions and during pharmacodynamic interventions. We studied simultaneous Finapres and brachial blood pressures (using a conventional oscillometric sphygmomanometer—Vitalmap) in ten normal volunteers at rest, and during dynamic exercise and a cold pressor test. The effects of pharmacodynamic intervention were examined following beta-adrenoceptor blockade with propranolol (160 mg) or beta-adrenoceptor modulation with the beta-adrenoceptor partial agonist celiprolol (400 mg). The Finapres systolic pressure was significantly higher than the brachial value during all three test states. The difference between the systolic pressures measured by the two devices was shown to increase significantly during the cold pressor test, but not during dynamic (supine bicycle) exercise. The Finapres diastolic pressure was significantly higher than the Vitalmap value during exercise and the cold pressor test. The differences between the two methods increased significantly over time. Beta-adrenergic blockade with propranolol or modulation with celiprolol had no significant interaction with the pressure differences between the Finapres and Vitalmap techniques. The results would support the view that the Finapres can provide blood pressure information which is robust under most circumstances. Although this pharmacodynamic intervention did not alter the relationship between the peripheral and central blood pressure, it is important to note that this dynamic relationship is sensitive to circulatory loading conditions and wave transmission characteristics; it is possible that the Finapres could be less reliable in clinical settings where potent vasoactive agents were being administered.
Testing the stability of the benefit transfer function for discrete choice contingent valuation data
Resumo:
This paper examines the stability of the benefit transfer function across 42 recreational forests in the British Isles. A working definition of reliable function transfer is Put forward, and a suitable statistical test is provided. A novel split sample method is used to test the sensitivity of the models' log-likelihood values to the removal of contingent valuation (CV) responses collected at individual forest sites, We find that a stable function improves Our measure of transfer reliability, but not by much. We conclude that, in empirical Studies on transferability, considerations of function stability are secondary to the availability and quality of site attribute data. Modellers' can study the advantages of transfer function stability vis-a-vis the value of additional information on recreation site attributes. (c) 2008 Elsevier GmbH. All rights reserved.
Resumo:
This paper proposes a continuous time Markov chain (CTMC) based sequential analytical approach for composite generation and transmission systems reliability assessment. The basic idea is to construct a CTMC model for the composite system. Based on this model, sequential analyses are performed. Various kinds of reliability indices can be obtained, including expectation, variance, frequency, duration and probability distribution. In order to reduce the dimension of the state space, traditional CTMC modeling approach is modified by merging all high order contingencies into a single state, which can be calculated by Monte Carlo simulation (MCS). Then a state mergence technique is developed to integrate all normal states to further reduce the dimension of the CTMC model. Moreover, a time discretization method is presented for the CTMC model calculation. Case studies are performed on the RBTS and a modified IEEE 300-bus test system. The results indicate that sequential reliability assessment can be performed by the proposed approach. Comparing with the traditional sequential Monte Carlo simulation method, the proposed method is more efficient, especially in small scale or very reliable power systems.
Resumo:
With the increasing utilization of electric vehicles (EVs), transportation systems and electrical power systems are becoming increasingly coupled. However, the interaction between these two kinds of systems are not well captured, especially from the perspective of transportation systems. This paper studies the reliability of integrated transportation and electrical power system (ITES). A bidirectional EV charging control strategy is first demonstrated to model the interaction between the two systems. Thereafter, a simplified transportation system model is developed, whose high efficiency makes the reliability assessment of the ITES realizable with an acceptable accuracy. Novel transportation system reliability indices are then defined from the view point of EV’s driver. Based on the charging control model and the transportation simulation method, a daily periodic quasi sequential reliability assessment method is proposed for the ITES system. Case studies based on RBTS system demonstrate that bidirectional charging controls of EVs will benefit the reliability of power systems, while decrease the reliability of EVs travelling. Also, the optimal control strategy can be obtained based on the proposed method. Finally, case studies are performed based on a large scale test system to verify the practicability of the proposed method.