61 resultados para Refinement of (SOR1NM2)
Resumo:
Purpose – Research into the communication skills of individuals with Cornelia de Lange syndrome (CdLS) is extremely limited. This paper aims to evaluate the nature of these skills and impairments in CdLS using a detailed informant assessment of pre-verbal communication skills.
Design/methodology/approach – The study used the Pre-verbal Communication Schedule to evaluate communication skills in individuals with CdLS (n ¼ 14), aged five to14 years. The group was compared with a contrast group of individuals with Cri du Chat syndrome (CdCS; n ¼ 14) who were matched for age and intellectual ability.
Findings – A significant difference was identified in understanding non-vocal communication (p , 0.005), with the CdLS group showing a greater deficit. These findings indicate the presence of a syndrome-specific deficit in understanding non-verbal communication in individuals with CdLS and suggest that there may be a dissociation between the processing of verbal and non-verbal communication.
Originality/value – The findings indicate that, in many ways, these two syndrome groups are not dissimilar in terms of their communication skills. However, individuals with CdLS show a syndrome-specific deficit in understanding non-vocal communication relative to the CdCS group.
Resumo:
Understanding the overall catalytic activity trend for rational catalyst design is one of the core goals in heterogeneous catalysis. In the past two decades, the development of density functional theory (DFT) and surface kinetics make it feasible to theoretically evaluate and predict the catalytic activity variation of catalysts within a descriptor-based framework. Thereinto, the concept of the volcano curve, which reveals the general activity trend, usually constitutes the basic foundation of catalyst screening. However, although it is a widely accepted concept in heterogeneous catalysis, its origin lacks a clear physical picture and definite interpretation. Herein, starting with a brief review of the development of the catalyst screening framework, we use a two-step kinetic model to refine and clarify the origin of the volcano curve with a full analytical analysis by integrating the surface kinetics and the results of first-principles calculations. It is mathematically demonstrated that the volcano curve is an essential property in catalysis, which results from the self-poisoning effect accompanying the catalytic adsorption process. Specifically, when adsorption is strong, it is the rapid decrease of surface free sites rather than the augmentation of energy barriers that inhibits the overall reaction rate and results in the volcano curve. Some interesting points and implications in assisting catalyst screening are also discussed based on the kinetic derivation. Moreover, recent applications of the volcano curve for catalyst design in two important photoelectrocatalytic processes (the hydrogen evolution reaction and dye-sensitized solar cells) are also briefly discussed.
Resumo:
G protein-coupled receptors (GPCRs) represent a major focus in functional genomics programs and drug development research, but their important potential as drug targets contrasts with the still limited data available concerning their activation mechanism. Here, we investigated the activation mechanism of the cholecystokinin-2 receptor (CCK2R). The three-dimensional structure of inactive CCK2R was homology-modeled on the basis of crystal coordinates of inactive rhodopsin. Starting from the inactive CCK2R modeled structure, active CCK2R (namely cholecystokinin-occupied CCK2R) was modeled by means of steered molecular dynamics in a lipid bilayer and by using available data from other GPCRs, including rhodopsin. By comparing the modeled structures of the inactive and active CCK2R, we identified changes in the relative position of helices and networks of interacting residues, which were expected to stabilize either the active or inactive states of CCK2R. Using targeted molecular dynamics simulations capable of converting CCK2R from the inactive to the active state, we delineated structural changes at the atomic level. The activation mechanism involved significant movements of helices VI and V, a slight movement of helices IV and VII, and changes in the position of critical residues within or near the binding site. The mutation of key amino acids yielded inactive or constitutively active CCK2R mutants, supporting this proposed mechanism. Such progress in the refinement of the CCK2R binding site structure and in knowledge of CCK2R activation mechanisms will enable target-based optimization of nonpeptide ligands.
Resumo:
PURPOSE:
To determine the in-field and out-of-field cell survival of cells irradiated with either primary field or scattered radiation in the presence and absence of intercellular communication.
METHODS AND MATERIALS:
Cell survival was determined by clonogenic assay in human prostate cancer (DU145) and primary fibroblast (AGO1552) cells following exposure to different field configurations delivered using a 6-MV photon beam produced with a Varian linear accelerator.
RESULTS:
Nonuniform dose distributions were delivered using a multileaf collimator (MLC) in which half of the cell population was shielded. Clonogenic survival in the shielded region was significantly lower than that predicted from the linear quadratic model. In both cell lines, the out-of-field responses appeared to saturate at 40%-50% survival at a scattered dose of 0.70 Gy in DU-145 cells and 0.24 Gy in AGO1522 cells. There was an approximately eightfold difference in the initial slopes of the out-of-field response compared with the a-component of the uniform field response. In contrast, cells in the exposed part of the field showed increased survival. These observations were abrogated by direct physical inhibition of cellular communication and by the addition of the inducible nitric oxide synthase inhibitor aminoguanidine known to inhibit intercellular bystander effects. Additional studies showed the proportion of cells irradiated and dose delivered to the shielded and exposed regions of the field to impact on response.
CONCLUSIONS:
These data demonstrate out-of-field effects as important determinants of cell survival following exposure to modulated irradiation fields with cellular communication between differentially irradiated cell populations playing an important role. Validation of these observations in additional cell models may facilitate the refinement of existing radiobiological models and the observations considered important determinants of cell survival.
Resumo:
The aim of this work is to determine the out-of-field survival of cells irradiated with either the primary field or scattered radiation in the presence and absence of intercellular communication following delivery of conformal, IMRT and VMAT treatment plans. Single beam, conformal, IMRT and VMAT plans were created to deliver 3 Gy to half the area of a T80 flask containing either DU-145 or AGO-1522 cells allowing intercellular communication between the in-and out-of-field cell populations. The same plans were delivered to a similar custom made phantom used to hold two T25 culture flasks, one flask in-field and one out-of-field to allow comparison of cell survival responses when intercellular communication is physically inhibited. Plans were created for the delivery of 8 Gy to the more radio-resistant DU-145 cells only in the presence and absence of intercellular communication. Cell survival was determined by clonogenic assay. In both cell lines, the out-of-field survival was not statistically different between delivery techniques for either cell line or dose. There was however, a statistically significant difference between survival out-of-field when intercellular communication was intact (single T80 culture flask) or inhibited (multiple T25 culture flasks) to in-field for all plans. No statistically significant difference was observed in-field with or without cellular communication to out-of-field for all plans. These data demonstrate out-of-field effects as important determinants of cell survival following exposure to modulated irradiation fields when cellular communication between differentially irradiated cell populations is present. This data is further evidence that refinement of existing radiobiological models to include indirect cell killing effects is required.
Resumo:
SLPI (secretory leucoprotease inhibitor) and elafin represent the archetypal members of the WFDC [WAP (whey acidic protein) four disulfide core] family of proteins, and were originally characterized as protease inhibitors but have since been shown to possess a wider repertoire of activities. These functions include antimicrobial and immunomodulatory properties, suggesting that these proteins may play key roles in the innate immune response, and indicate the potential to develop some of these proteins as novel therapeutics. Susceptibility to host and bacterial protease cleavage may, however, limit the efficacy of recombinant protein therapies in diseases with a high protease burden such as CF (cystic fibrosis) lung disease. To overcome this problem, further refinement of the native proteins will be required to provide effective treatment strategies.
Resumo:
Retinitis pigmentosa (RP) is a devastating form of retinal degeneration, with significant social and professional consequences. Molecular genetic information is invaluable for an accurate clinical diagnosis of RP due to its high genetic and clinical heterogeneity. Using a gene capture panel that covers 163 of the currently known retinal disease genes, including 48 RP genes, we performed a comprehensive molecular screening in a collection of 123 RP unsettled probands from a wide variety of ethnic backgrounds, including 113 unrelated simplex and 10 autosomal recessive RP (arRP) cases. As a result, 61 mutations were identified in 45 probands, including 38 novel pathogenic alleles. Interestingly, we observed that phenotype and genotype were not in full agreement in 21 probands. Among them, eight probands were clinically reassessed, resulting in refinement of clinical diagnoses for six of these patients. Finally, recessive mutations in CLN3 were identified in five retinal degeneration patients, including four RP probands and one cone-rod dystrophy patient, suggesting that CLN3 is a novel non-syndromic retinal disease gene. Collectively, our results underscore that, due to the high molecular and clinical heterogeneity of RP, comprehensive screening of all retinal disease genes is effective in identifying novel pathogenic mutations and provides an opportunity to discover new genotype-phenotype correlations. Information gained from this genetic screening will directly aid in patient diagnosis, prognosis, and treatment, as well as allowing appropriate family planning and counseling.
Resumo:
Ultrasonic welding process can be used for bonding metal foils which is the fundament of ultrasonic consolidation (UC). UC process can be used to embed reinforcement fibres such as SiC fibres within an aluminum matrix materials. In this research we are investigating the phenomena occurring in the microstructure of the parts during ultrasonic welding process to obtain better understanding about how and why the process works. High-resolution electron backscatter diffraction (EBSD) is used to study the effects of the vibration on the evolution of microstructure in AA3003. The inverse pole figures (IPF) and the correlated misorientation angle distribution of the mentioned samples are obtained. The characteristics of the crystallographic orientation, the grain structure and the grain boundary are analyzed to find the effect of ultrasonic vibration on the microstructure and microtexture of the bond. The ultrasonic vibration will lead to exceptional refinement of grains to a micron level along the bond area and affect the crystallographic orientation. Ultrasonic vibration results in a very weak texture. Plastic flow occurs in the grain after welding process and there is additional plastic flow around the fibre which leads to the fibre embedding. © 2009 Editorial Board of CHINA WELDING.
Resumo:
Ultrasonic consolidation (UC) uses high frequency (20-40KHz) mechanical vibrations to produce a solid-state metallurgical bond (weld) between metal foils. UC as a novel layered manufacturing technique is used in this research to embed reinforcing members such as silicon carbide fibers into the aluminium alloy 6061's matrices. It is known that UC induce volume and surface effect in the material it is acting on. Both effects are employed in embedding active/passive elements in the metal matrix. Whilst the process and the two effects are used and identified at macro level, what is happening at micro level is unknown and hardly studied. In this research we are investigating the phenomena occurring in the microstructure of the parts during UC process to obtain better understanding about how and why the process works. In this research, high-resolution electron backscatter diffraction is used to study the effects of the UC process on the evolution of microstructure in AA6061 with and without fibre elements. The inverse pole figures (IPF), pole figures (PF) and the correlated misorientation angle distribution of the mentioned samples are obtained. The characteristics of the crystallographic orientation, the grain structure and the grain boundary are analysed to find the effect of ultrasonic vibration and embedding fibre on the microstructure and texture of the bond. The ultrasonic vibration will lead to exceptional refinement of grains to a micron level along the bond area and affect the crystallographic orientation. Additional plastic flow occurs around the fibre which leads to the fibre embedding. © 2008 Materials Research Society.