3 resultados para Reduction of ZnO


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The initial rate of the photocatalysed oxidation of methylene blue, MB, by dissolved oxygen in solution, ri(MB), is measured for a series of titania on glass samples exhibiting a wide range of activities.  The samples used include two different types of commercial self-cleaning glass and a lab-made sol-geltitania film.  The activities of these samples are also assessed using a resazurin-based photocatalyst activity indicator ink, i.e. Rz paii, for which the initial rates of the photocatalysed reduction of Rz were measured, ri(Rz).  A plot of ri(MB)vs. ri(Rz) reveals a goodstraight line, thereby demonstrating a linear correlation (for TiO2films on glass at least) between the slow (usually hours) photocatalysed oxidation of organic materials, such as MB, and the fast (typically minutes) photocatalysed irreversible reduction of a dye, like Rz, in a paii.  The possible use of paii technology for assessing, in a simple, quick and inexpensive manner, photocatalytic films both in the laboratory and in situ is discussed briefly.  

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metal exchanged CHA-type (SAPO-34 and SSZ-13) zeolites are promising catalysts for selective catalytic reduction (SCR) of NOx by NH3. However, the understanding of the process at the molecular level is still limited, which hinders the identification of its mechanism and the design of more efficient zeolite catalysts. In this work, modelling the reaction over Cu-SAPO-34, a periodic density functional theory (DFT) study of NH3-SCR was performed using hybrid functional with the consideration of van der Waals (vdW) interactions. A mechanism with a low N–N coupling barrier is proposed to account for the activation of NO. The redox cycle of Cu2+ and Cu+, which is crucial for the SCR process, is identified with detailed analyses. Besides, the decomposition of NH2NO is shown to readily occur on the Brønsted acid site by a hydrogen push-pull mechanism, confirming the collective efforts of Brønsted acid and Lewis acid (Cu2+) sites. The special electronic and structural properties of Cu-SAPO-34 are demonstrated to play an essential role the reaction, which may have a general implication on the understanding of zeolite catalysis.