28 resultados para Red algae -- Mediterranean Sea
Resumo:
There is a great need to design functional bioactive substitute materials capable of surviving harsh and diverse conditions within the human body. Calcium-phosphate ceramics, in particular hydroxyapatite are well established substitute materials for orthopaedic and dental applications. The aim of this study was to develop a bioceramic from alga origins suitable for bone tissue application. This was achieved by a novel synthesis technique using ambient pressure at a low temperature of 100 degrees C in a highly alkaline environment. The algae was characterised using SEM, BET, XRD and Raman Spectroscopy to determine its physiochemical properties at each stage. The results confirmed the successful conversion of mineralised red alga to hydroxyapatite, by way of this low-pressure hydrothermal process. Furthermore, the synthesised hydroxyapatite maintained the unique micro-porous structure of the original algae, which is considered beneficial in bone repair applications. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Bone void fillers that can enhance biological function to augment skeletal repair have significant therapeutic potential in bone replacement surgery. This work focuses on the development of a unique microporous (0.5-10 mu m) marine-derived calcium phosphate bioceramic granule. It was prepared fro Corallina officinalis, a mineralized red alga, using a novel manufacturing process. This involved thermal processing, followed by a low pressure-temperature chemical synthesis reaction. The study found that the ability to maintain the unique algal morphology was dependent on the thermal processing conditions. This study investigates the effect of thermal heat treatment on the physiochemical properties of the alga. Thermogravimetric analysis was used to monitor its thermal decomposition. The resultant thermograms indicated the presence of a residual organic phase at temperatures below 500 degrees C and an irreversible solid-state phase transition from mg-rich-calcite to calcium oxide at temperatures over 850 degrees C. Algae and synthetic calcite were evaluated following heat treatment in an air-circulating furance at temperatures ranging from 400 to 800 degrees C. The highest levels of mass loss occurred between 400-500 degrees C and 700-800 degrees C, which were attributed to the organic and carbonate decomposition respectively. The changes in mechanical strength were quantified using a simple mechanical test, which measured the bulk compressive strength of the algae. The mechanical test used may provide a useful evaluation of the compressive properties of similar bone void fillers that are in granular form. The study concluded that soak temperatures in the range of 600 to 700 degrees C provided the optimum physiochemical properties as a precursor to conversion to hydroxyapatite (HA). At these temperatures, a partial phase transition to calcium oxide occurred and the original skeletal morphology of the alga remained intact.
Resumo:
Red algae (Rhodophyta) are an ancient group with unusual morphological, biochemical, and life-history features including a complete absence of flagella. Although the red algae present many opportunities for studying speciation, this has rarely been explicitly addressed. Here, we examine an aspect of paternal gene flow by determining fertilization success of female Neosiphonia harveyi (Ceramiales), which retains a morphological record of all successful and unsuccessful female gametes. High fertilization rates were observed except when there were no males at all within the tidepool, or in a submerged marina environment. Small numbers of reproductive males were able to saturate fertilization rates, suggesting that limited availability of sperm may be less significant in red algae than previously thought. In another member of the Ceramiales, Antithamnion, relatively large chromosomes permit karyological identification of polyploids. The Western Pacific species Antithamnion sparsum is closely related to the diploid species Antithamnion defectum, known only from the Eastern Pacific, and appears to have evolved from it. Molecular evidence suggests that A. sparsum is an autopolyploid, and that the European species known as Antithamnion densum is divergent from the A. sparsum/defectum complex.
Resumo:
Despite the importance of gelatinous zooplankton as components of marine ecosystems, both ecologically and socio-economically, relatively little is known about population persistence or connectivity in jellyfish. In the present study, we employed a combination of nuclear microsatellite markers and sequence data from the mitochondrial cytochrome oxidase I (COI) gene to determine levels and patterns of population genetic structuring in the holoplanktonic jellyfish Pelagia noctiluca across the northeast Atlantic Ocean and Mediterranean Sea. Our results indicate a high degree of connectivity in P. noctiluca, with little evidence of geographical structuring of genetic variation. A small but significant differentiation of Atlantic Ocean and Mediterranean stocks was detected based on the microsatellite data, but no evidence of differentiation was observed with the mtDNA, probably due to the higher power of the microsatellites to detect low levels of genetic structuring. Two clearly distinct groups of genotypes were observed within the mtDNA COI, which probably diverged in the early Pleistocene, but with no evidence of geographical structuring. Palaeodistribution modelling of P. noctiluca at the Last Glacial Maximum (LGM; ca. 21 KYA) indicated large areas of suitable habitat south of the species’ current-day distribution, with little reduction in area. The congruent evidence for minimal genetic differentiation from the nuclear microsatellites and the mtDNA, coupled with the results of the palaeodistribution modelling, supports the idea of long-term population stability and connectivity, thus providing key insights into the population dynamics and demography of this important species
Resumo:
Field-collected specimens of three species of Laminaria and three species of subtidal red algae (Delesseria sanguinea, Plocamium cartilagineum and Phyllophora pseudoceranoides) were exposed to natural summer sunlight on Helgoland (southern North Sea) for up to 4 h at 15 °C. Dark-adapted variable fluorescence (Fv : Fm) was measured immediately after these treatments, and following 6, 24 and 48 h of recovery in moderate irradiances of white light. The response of plants to the full spectrum of natural sunlight was compared with that to PAR alone, UV-A + visible, UV-A + UV-B, or UV-A alone. The Fv : Fm values of all species were reduced to minimal values after 4 h in all of these treatments, but those of the more resistant species (Laminaria spp. and P. pseudoceranoides) were higher after shorter exposures to UV radiation alone than to PAR with or without UV. The recovery of Fv : Fm in all species was also more rapid in the two treatments that contained UV radiation alone than in those that included PAR. These results suggest that it is the high irradiances of PAR in natural sunlight which are responsible for the photoinhibition of photosynthesis of subtidal seaweeds and that the current ambient irradiances of UV radiation (either UV-B or UV-A) in northern temperate latitudes would not contribute significantly to this photoinhibition.
Resumo:
In Europe, the last 20 years have seen a spectacular increase in accidental introductions of marine species, but it has recently been suggested that both the actual number of invaders and their impacts have been seriously underestimated because of the prevalence of sibling species in marine habitats. The red alga Polysiphoniaharveyi is regarded as an alien in the British Isles and Atlantic Europe, having appeared in various locations there during the past 170 years. Similar or conspecific populations are known from Atlantic North America and Japan. To choose between three competing hypotheses concerning the origin of P. harveyi in Europe, we employed rbcL sequence analysis in conjunction with karyological and interbreeding data for samples and isolates of P. harveyi and various congeners from the Pacific and North Atlantic Oceans. All cultured isolates of P. harveyi were completely interfertile, and there was no evidence of polyploidy or aneuploidy. Thus, this biological species is both morphologically and genetically variable: intraspecific rbcL divergences of up to 2.1% are high even for red algae. Seven rbcL haplotypes were identified. The four most divergent haplotypes were observed in Japanese samples from Hokkaido and south-central Honshu, which are linked by hypothetical 'missing' haplotypes that may be located in northern Honshu. These data are consistent with Japan being the centre of diversity and origin for P. harveyi. Two non-Japanese lineages were linked to Hokkaido and Honshu, respectively. A single haplotype was found in all North Atlantic and Mediterranean accessions, except for North Carolina, where the haplotype found was the same as that invading in New Zealand and California. The introduction of P. harveyi into New Zealand has gone unnoticed because P. strictissima is a morphologically indistinguishable native sibling species. The sequence divergence between them is 4–5%, greater than between some morphologically distinct red algal species. Two different types of cryptic invasions of P. harveyi have therefore occurred. In addition to its introduction as a cryptic sibling species in New Zealand, P. harveyi has been introduced at least twice into the North Atlantic from presumed different source populations. These two introductions are genetically and probably also physiologically divergent but completely interfertile.
Resumo:
This paper discusses the opposition to the disposal of Syrian chemical weapons in the Mediterranean Sea. Following insights from Green criminology and recent calls in that discipline for the inclusion of new social movements and resistance, it discusses in detail how the issue was framed in terms of environmental and ecological justice by different protest actors. This process is aided by an analytical model that brings together the sociology of protest and social movements, insights from reflexive modernisation and the study of southern European civil societies. Methodologically, the focus is on mobilisations that took place in Greece in general and the island of Crete in particular. Data have been harvested through the examination of online sources, such as newspapers, blogs and dedicated social networks. The analysis of the findings suggests that these mobilisations were initially stimulated by real concern, but subsequently these were only carried through by certain movement entrepreneurs who didn’t hesitate to pepper these concerns with false claims and/or linkages to an already active anti-imperialist discourse.
Resumo:
The Rhodophyceae (red algae) are an established source of volatile halocarbons in the marine environment. Some species in the Bonnemaisoniaceae have been reported to contain large amounts of halogens in structures referred to as vesicle cells, suggesting involvement of these specialised cells in the production of halocarbons. We have investigated the role of vesicle cells in the accumulation and metabolism of bromide in an isolate of the red macroalga Asparagopsis (Falkenbergia stage), a species known to release bromocarbons. Studies of laboratory-cultivated alga, using light microscopy, revealed a requirement of bromide for both the maintenance and formation of vesicle cells. Incubation of the alga in culture media with bromide concentrations below 64 mg l-1 (the concentration of Br- in seawater) resulted in a decrease in the proportion of vesicle cells to pericentral cells. The abundance of vesicle cells was correlated with bromide concentration below this level. Induction of vesicle cell formation in cultures of Falkenbergia occurred at concentrations as low as 8 mg l-1, with the abundance of vesicle cells increasing with bromide concentration up to around 100 mg l-1. Further studies revealed a positive correlation between the abundance of vesicle cells and dibromomethane and bromoform production. Interestingly, however, whilst dibromomethane production was stimulated by the presence of bromide in the culture media, bromoform release remained unaffected suggesting that the two compounds are formed by different mechanisms.
Resumo:
In the Ceramiaceae, one of the largest families of the red algae, there are from 1 to 4000 nuclei in each vegetative cell, but each tribe is homogeneous with respect to the uninucleate/multinucleate character state, except for the Callithamnieae. The goals of this study were to analyze rbcL gene sequences to clarify the evolution of taxa within the tribe Callithamnieae and to evaluate the potential evolutionary significance of the development of multinucleate cells in certain taxa. The genus Aglaothamnion, segregated from Callithamnion because it is uninucleate, was paraphyletic in all analyses. Callithamnion (including Aristothamnion) was monophyletic although not robustly so, apparently due to variations between taxa in rate of sequence evolution. Morphological synapomorphies were identified at different depths in the tree, supporting the molecular phylogenetic analysis. The uninucleate character state is ancestral in this tribe. The evolution of multinucleate cells has occurred once in the Callithamnieae. Multiple nuclei in each cell may combine the benefits of small C values (rapid cell cycle) with large cells (permitting morphological elaboration) while maintaining a constant ratio of nuclear volume: cytoplasmic volume.
Resumo:
Maerl is a general term used for loose-lying subtidal beds of nodular coralline red algae. Maerl beds support high associated invertebrate and algal biodiversity, and are subject to European and UK conservation legislation. Previous investigations have shown European maerl to be ecologically fragile due to growth rates of approximately I mm per year. However, these very slow growth rates have hampered attempts to determine the key ecological requirements and sensitivity characteristics of living maerl. In this study, photosynthetic capacity determined by pulse amplitude modulated (PAM) fluorometry was used as a diagnostic of stress caused by various environmental conditions. Maerl species were exposed to a range of temperatures, salinities and light levels and to burial, fragmentation, desiccation and heavy metal treatment. Maerl was not as susceptible as previously assumed to extremes of salinity, temperature and heavy metal pollution, but burial, especially in fine or anoxic sediments, was lethal or caused significant stress. These data indicate that the main anthropogenic hazard for live maerl and the rich communities that depend on them is smothering by fine sediment, such as that produced by trawling or maerl extraction, from sewage discharges or shellfish and fish farm waste, and sedimentation resulting from disruption to tidal flow. (C) 2004 Elsevier Ltd. All rights reserved.