10 resultados para Rectal Gland
Resumo:
The intestinal tract of schistosomes opens at the mouth and leads into the foregut or oesophageal region that is lined with syncytium continuous with the apical cytoplasm of the tegument. The oesophagus is surrounded by a specialised gland, the oesophageal gland. This gland releases materials into the lumen of the oesophagus and the region is thought to initiate the lysis of erythrocytes and neutralisation of immune effectors of the host. The oesophageal region is present in the early invasive schistosomulum, a stage potentially targetable by anti-schistosome vaccines. We used a 44k oligonucleotide microarray to identify highly up-regulated genes in microdissected frozen sections of the oesophageal gland of male worms of S. mansoni. We show that 122 genes were up-regulated 2-fold or higher in the oesophageal gland compared with a whole male worm tissue control. The enriched genes included several associated with lipid metabolism and transmembrane transport as well as some micro-exon genes. Since the oesophageal gland is important in the initiation of digestion and the fact that it develops early after invasion of the mammalian host, further study of selected highly up-regulated functionally important genes in this tissue may reveal new anti-schistosome intervention targets for schistosomiasis control.
Resumo:
Background: Lethal-7 (let-7) is a tumour suppressor miRNA which acts by down-regulating several oncogenes including KRAS. A single-nucleotide polymorphism (rs61764370, T > G base substitution) in the let-7 complementary site 6 (LCS-6) of KRAS mRNA has been shown to predict prognosis in early-stage colorectal cancer (CRC) and benefit from anti-epidermal growth factor receptor monoclonal antibodies in metastatic CRC. Patients and methods: We analysed rs61764370 in EXPERT-C, a randomised phase II trial of neoadjuvant CAPOX followed by chemoradiotherapy, surgery and adjuvant CAPOX plus or minus cetuximab in locally advanced rectal cancer. DNA was isolated from formalin-fixed paraffin-embedded tumour tissue and genotyped using a PCR-based commercially available assay. Kaplan–Meier method and Cox regression analysis were used to calculate survival estimates and compare treatment arms. Results: A total of 155/164 (94.5%) patients were successfully analysed, of whom 123 (79.4%) and 32 (20.6%) had the LCS-6 TT and LCS-6 TG genotype, respectively. Carriers of the G allele were found to have a statistically significantly higher rate of complete response (CR) after neoadjuvant therapy (28.1% versus 10.6%; P = 0.020) and a trend for better 5-year progression-free survival (PFS) [77.4% versus 64.5%: hazard ratio (HR) 0.56; P = 0.152] and overall survival (OS) rates (80.3% versus 71.9%: HR 0.59; P = 0.234). Both CR and survival outcomes were independent of the use of cetuximab. The negative prognostic effect associated with KRAS mutation appeared to be stronger in patients with the LCS-6 TT genotype (HR PFS 1.70, P = 0.078; HR OS 1.79, P = 0.082) compared with those with the LCS-6 TG genotype (HR PFS 1.33, P = 0.713; HR OS 1.01, P = 0.995). Conclusion: This analysis suggests that rs61764370 may be a biomarker of response to neoadjuvant treatment and an indicator of favourable outcome in locally advanced rectal cancer possibly by mitigating the poor prognosis of KRAS mutation. In this setting, however, this polymorphism does not appear to predict cetuximab benefit.
TP53 mutational status and cetuximab benefit in rectal cancer: 5-year results of the EXPERT-C trial.
Resumo:
In this updated analysis of the EXPERT-C trial we show that, in magnetic resonance imaging-defined, high-risk, locally advanced rectal cancer, adding cetuximab to a treatment strategy with neoadjuvant CAPOX followed by chemoradiotherapy, surgery, and adjuvant CAPOX is not associated with a statistically significant improvement in progression-free survival (PFS) and overall survival (OS) in both KRAS/BRAF wild-type and unselected patients. In a retrospective biomarker analysis, TP53 was not prognostic but emerged as an independent predictive biomarker for cetuximab benefit. After a median follow-up of 65.0 months, TP53 wild-type patients (n = 69) who received cetuximab had a statistically significant better PFS (89.3% vs 65.0% at 5 years; hazard ratio [HR] = 0.23; 95% confidence interval [CI] = 0.07 to 0.78; two-sided P = .02 by Cox regression) and OS (92.7% vs 67.5% at 5 years; HR = 0.16; 95% CI = 0.04 to 0.70; two-sided P = .02 by Cox regression) than TP53 wild-type patients who were treated in the control arm. An interaction between TP53 status and cetuximab effect was found (P <.05) and remained statistically significant after adjusting for statistically significant prognostic factors and KRAS.
Resumo:
Background: RAS mutations predict resistance to anti-epidermal growthfactor receptor (EGFR) monoclonal antibodies in metastatic colorectal cancer. We analysed RAS mutations in 30 non-metastatic rectal cancer patients treated with or without cetuximab within the 31 EXPERT-C trial.
Methods: Ninety of 149 patients with tumours available for analysis were KRAS/BRAF wild-type, and randomly assigned to capecitabine plus oxaliplatin (CAPOX) followed by chemoradiotherapy, surgery and adjuvant CAPOX or the same regimen plus cetuximab (CAPOX-C). Of these, four had a mutation of NRAS exon 3, and 84 were retrospectively analysed for additional KRAS (exon 4) and NRAS (exons 2/4) mutations by using bi-directional Sanger sequencing. The effect of cetuximab on study end-points in the RAS wild-type population was analysed.
Results: Eleven (13%) of 84 patients initially classified as KRAS/BRAF wild-type were found to have a mutation in KRAS exon 4 (11%) or NRAS exons 2/4 (2%). Overall, 78/149 (52%) assessable patients were RAS wild-type (CAPOX, n = 40; CAPOX-C, n = 38). In this population, after a median follow-up of 63.8 months, in line with the initial analysis, the addition of cetuximab was associated with numerically higher, but not statistically significant, rates of complete response (15.8% versus 7.5%, p = 0.31), 5-year progression-free survival (75.5% versus 67.5%, hazard ratio (HR) 0.61, p = 0.25) and 5-year overall survival (83.8% versus 70%, HR 0.54, p = 0.20).
Conclusions: RAS mutations beyond KRAS exon 2 and 3 were identified in 17% of locally advanced rectal cancer patients. Given the small sample size, no definitive conclusions on the effect of additional RAS mutations on cetuximab treatment in this setting can be drawn and further investigation of RAS in larger studies is warranted.
Resumo:
BACKGROUND: HER2 is an established therapeutic target in breast and gastric cancers. The role of HER2 in rectal cancer is unclear, as conflicting data on the prevalence of HER2 expression in this disease have been reported. We evaluated the prevalence of HER2 and its impact on the outcome of high-risk rectal cancer patients treated with neoadjuvant CAPOX and CRT±cetuximab in the EXPERT-C trial. PATIENTS AND METHODS: Eligible patients with available tumour tissue for HER2 analysis were included. HER2 expression was determined by immunohistochemistry (IHC) in pre-treatment biopsies and/or surgical specimens (score 0-3+). Immunostaining was scored according to the consensus panel recommendations on HER2 scoring for gastric cancer. Tumours with equivocal IHC result (2+) were tested for HER2 amplification by D-ISH. Tumours with IHC 3+ or D-ISH ratio ≥2.0 were classified as HER2+. The impact of HER2 on primary and secondary end points of the study was analysed. RESULTS: Of 164 eligible study patients, 104 (63%) biopsy and 114 (69%) surgical specimens were available for analysis. Only 3 of 104 (2.9%) and 3 of 114 (2.6%) were HER2+, respectively. In 77 patients with paired specimens, concordance for HER2 status was found in 74 (96%). Overall, 141 patients were assessable for HER2 and 6 out of 141 (4.3%) had HER2 overexpression and/or amplification. The median follow-up was 58.6 months. HER2 was not associated with a difference in the outcome for any of the study end points, including in the subset of 90 KRAS/BRAF wild-type patients treated±cetuximab. CONCLUSIONS: Based on the low prevalence of expression as recorded in the EXPERT-C trial, HER2 does not appear to represent a useful therapeutic target in high-risk rectal cancer. However, the role of HER2 as a potential predictive biomarker of resistance to anti-EGFR-based treatments and a therapeutic target in anti-EGFR refractory metastatic colorectal cancer (CRC) warrants further investigation. TRIAL REGISTRATION: ISRCTN Register: 99828560.
Resumo:
PURPOSE: To evaluate the addition of cetuximab to neoadjuvant chemotherapy before chemoradiotherapy in high-risk rectal cancer. PATIENTS AND METHODS: Patients with operable magnetic resonance imaging-defined high-risk rectal cancer received four cycles of capecitabine/oxaliplatin (CAPOX) followed by capecitabine chemoradiotherapy, surgery, and adjuvant CAPOX (four cycles) or the same regimen plus weekly cetuximab (CAPOX+C). The primary end point was complete response (CR; pathologic CR or, in patients not undergoing surgery, radiologic CR) in patients with KRAS/BRAF wild-type tumors. Secondary end points were radiologic response (RR), progression-free survival (PFS), overall survival (OS), and safety in the wild-type and overall populations and a molecular biomarker analysis. RESULTS: One hundred sixty-five eligible patients were randomly assigned. Ninety (60%) of 149 assessable tumors were KRAS or BRAF wild type (CAPOX, n = 44; CAPOX+C, n = 46), and in these patients, the addition of cetuximab did not improve the primary end point of CR (9% v 11%, respectively; P = 1.0; odds ratio, 1.22) or PFS (hazard ratio [HR], 0.65; P = .363). Cetuximab significantly improved RR (CAPOX v CAPOX+C: after chemotherapy, 51% v 71%, respectively; P = .038; after chemoradiation, 75% v 93%, respectively; P = .028) and OS (HR, 0.27; P = .034). Skin toxicity and diarrhea were more frequent in the CAPOX+C arm. CONCLUSION: Cetuximab led to a significant increase in RR and OS in patients with KRAS/BRAF wild-type rectal cancer, but the primary end point of improved CR was not met.