11 resultados para Recognition Memory
Resumo:
In a recently published study, Sloutsky and Fisher [Sloutsky, V. M., & Fisher, A.V. (2004a). When development and learning decrease memory: Evidence against category-based induction in children. Psychological Science, 15, 553-558; Sloutsky, V. M., & Fisher, A. V. (2004b). Induction and categorization in young children: A similarity-based model. Journal of Experimental Psychology: General, 133, 166-188.] demonstrated that children have better memory for the items that they generalise to than do adults. On the basis of this finding, they claim that children and adults use different mechanisms for inductive generalisations;whereas adults focus on shared category membership, children project properties on the basis of perceptual similarity. Sloutsky & Fisher attribute children's enhanced recognition memory to the more detailed processing required by this similarity-based mechanism. In Experiment I we show that children look at the stimulus items for longer than adults. In Experiment 2 we demonstrate that although when given just 250 ms to inspect the items children remain capable of making accurate inferences, their subsequent memory for those items decreases significantly. These findings suggest that there are no necessary conclusions to be drawn from Sloutsky & Fisher's results about developmental differences in generalisation strategy. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This study explored the pattern of memory functioning in 58 patients with chronic schizophrenia and compared their performance with 53 normal controls. Multiple domains of memory were assessed, including verbal and nonverbal memory span, verbal and non-verbal paired associate learning, verbal and visual long-term memory, spatial and non-spatial conditional associative learning, recognition memory and memory for temporal order. Consistent with previous studies, substantial deficits in long-term memory were observed, with relative preservation of memory span. Memory for temporal order and recognition memory was intact, although significant deficits were observed on the conditional associative learning tasks. There was no evidence of lateralized memory impairment. In these respects, the pattern of memory impairment in schizophrenia is more similar in nature to that found in patients with memory dysfunction following mesiotemporal lobe lesions, rather than that associated with focal frontal lobe damage. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
For many applications of emotion recognition, such as virtual agents, the system must select responses while the user is speaking. This requires reliable on-line recognition of the user’s affect. However most emotion recognition systems are based on turnwise processing. We present a novel approach to on-line emotion recognition from speech using Long Short-Term Memory Recurrent Neural Networks. Emotion is recognised frame-wise in a two-dimensional valence-activation continuum. In contrast to current state-of-the-art approaches, recognition is performed on low-level signal frames, similar to those used for speech recognition. No statistical functionals are applied to low-level feature contours. Framing at a higher level is therefore unnecessary and regression outputs can be produced in real-time for every low-level input frame. We also investigate the benefits of including linguistic features on the signal frame level obtained by a keyword spotter.
Resumo:
This paper presents a feature selection method for data classification, which combines a model-based variable selection technique and a fast two-stage subset selection algorithm. The relationship between a specified (and complete) set of candidate features and the class label is modelled using a non-linear full regression model which is linear-in-the-parameters. The performance of a sub-model measured by the sum of the squared-errors (SSE) is used to score the informativeness of the subset of features involved in the sub-model. The two-stage subset selection algorithm approaches a solution sub-model with the SSE being locally minimized. The features involved in the solution sub-model are selected as inputs to support vector machines (SVMs) for classification. The memory requirement of this algorithm is independent of the number of training patterns. This property makes this method suitable for applications executed in mobile devices where physical RAM memory is very limited. An application was developed for activity recognition, which implements the proposed feature selection algorithm and an SVM training procedure. Experiments are carried out with the application running on a PDA for human activity recognition using accelerometer data. A comparison with an information gain based feature selection method demonstrates the effectiveness and efficiency of the proposed algorithm.
Resumo:
Whether fetal memory exists has attracted interest for many thousands of years. The following review draws on recent experimental evidence to consider two questions: does the fetus have a memory? And, if so, what function(s) does it serve? Evidence from fetal learning paradigms of classical conditioning, habituation and exposure learning reveal that the fetus does have a memory. By comparison little attention has been paid to the possible function of memory. Possible functions discussed are: practice, recognition of and attachment to the mother, promotion of breastfeeding, and language acquisition. It is concluded that the fetus does possess a memory but that more attention to the functions of fetal memory will guide future studies of fetal memory abilities.
Resumo:
There is considerable interest in creating embedded, speech recognition hardware using the weighted finite state transducer (WFST) technique but there are performance and memory usage challenges. Two system optimization techniques are presented to address this; one approach improves token propagation by removing the WFST epsilon input arcs; another one-pass, adaptive pruning algorithm gives a dramatic reduction in active nodes to be computed. Results for memory and bandwidth are given for a 5,000 word vocabulary giving a better practical performance than conventional WFST; this is then exploited in an adaptive pruning algorithm that reduces the active nodes from 30,000 down to 4,000 with only a 2 percent sacrifice in speech recognition accuracy; these optimizations lead to a more simplified design with deterministic performance.
Resumo:
A practically viable multi-biometric recognition system should not only be stable, robust and accurate but should also adhere to real-time processing speed and memory constraints. This study proposes a cascaded classifier-based framework for use in biometric recognition systems. The proposed framework utilises a set of weak classifiers to reduce the enrolled users' dataset to a small list of candidate users. This list is then used by a strong classifier set as the final stage of the cascade to formulate the decision. At each stage, the candidate list is generated by a Mahalanobis distance-based match score quality measure. One of the key features of the authors framework is that each classifier in the ensemble can be designed to use a different modality thus providing the advantages of a truly multimodal biometric recognition system. In addition, it is one of the first truly multimodal cascaded classifier-based approaches for biometric recognition. The performance of the proposed system is evaluated both for single and multimodalities to demonstrate the effectiveness of the approach.