9 resultados para Receptor tyrosine kinase
Resumo:
Clinical outcome following chemotherapy for malignant pleural mesothelioma is poor and improvements are needed. This preclinical study investigates the effect of five tyrosine kinase inhibitors (PTK787, ZD6474, ZD1839, SU6668 and SU11248) on the growth of three mesothelioma cell lines (NCI H226, NCI H28 and MSTO 211H), the presence of growth factor receptors and inhibition of their downstream signalling pathways. GI50 values were determined: ZD6474 and SU11248, mainly VEGFR2 inhibitors, gave the lowest GI50 across all cell lines (3.5-6.9 microM) whereas ZD1839 gave a GI50 in this range only in H28 cells. All cell lines were positive for EGFR, but only H226 cells were positive for VEGFR2 by Western blotting. ZD6474 and ZD1839 inhibited EGF-induced phosphorylation of EGFR, AKT and ERK, whereas VEGF-induced phosphorylation of VEGFR2 was completely inhibited with 0.1 microM SU11248. VEGFR2 was detected in tumour samples by immunohistochemistry. VEGFR2 tyrosine kinase inhibitors warrant further investigation in mesothelioma.
Resumo:
The efficacy of tyrosine kinase (TK) inhibitors on non-cycling acute myeloid leukaemia (AML) cells, previously shown to have potent tumourigenic potential, is unknown. This pilot study describes the first attempt to characterize non-cycling cells from a small series of human FMS-like tyrosine kinase 3 (FLT3) mutation positive samples. CD34+ AML cells from patients with FLT3 mutation positive AML were cultured on murine stroma. In expansion cultures, non-cycling cells were found to retain CD34+ expression in contrast to dividing cells. Leukaemic gene rearrangements could be detected in non-cycling cells, indicating their leukaemic origin. Significantly, the FLT3-internal tandem duplication (ITD) mutation was found in the non-cycling fraction of four out of five cases. Exposure to the FLT3-directed inhibitor TKI258 clearly inhibited the growth of AML CD34+ cells in short-term cultures and colony-forming unit assays. Crucially, non-cycling cells were not eradicated, with the exception of one case, which exhibited exquisite sensitivity to the compound. Moreover, in longer-term cultures, TKI258-treated non-cycling cells showed no growth impairment compared to treatment-naive non-cycling cells. These findings suggest that non-cycling cells in AML may constitute a disease reservoir that is resistant to TK inhibition. Further studies with a larger sample size and other inhibitors are warranted.
Resumo:
INTRODUCTION: The presence of ROS proto-oncogene 1, receptor tyrosine kinase gene (ROS1) rearrangements in lung cancers confers sensitivity to ROS kinase inhibitors, including crizotinib. However, they are rare abnormalities (in ∼1% of non-small cell lung carcinomas) that are typically identified by fluorescence in situ hybridization (FISH), and so screening using immunohistochemical (IHC) staining would be both cost- and time-efficient.
METHODS: A cohort of lung tumors negative for other common mutations related to targeted therapies were screened to assess the sensitivity and specificity of IHC staining in detecting ROS1 gene rearrangements, enriched by four other cases first identified by FISH. A review of published data was also undertaken.
RESULTS: IHC staining was 100% sensitive (95% confidence interval: 48-100) and 83% specific (95% confidence interval: 86-100) overall when an h-score higher than 100 was used. Patients with ROS1 gene rearrangements were younger and typically never-smokers, with the tumors all being adenocarcinomas with higher-grade architectural features and focal signet ring morphologic features (two of five). Four patients treated with crizotinib showed a partial response, with three also showing a partial response to pemetrexed. Three of four patients remain alive at 13, 27, and 31 months, respectively.
CONCLUSION: IHC staining can be used to screen for ROS1 gene rearrangements, with patients herein showing a response to crizotinib. Patients with tumors that test positive according to IHC staining but negative according to FISH were also identified, which may have implications for treatment selection.
Resumo:
Attaching and effacing (A/E) lesions and actin polymerization, the hallmark of enteropathogenic Escherichia coli (EPEC), enterohemorrhagic E. coli (EHEC) and Citrobacter rodentium (CR) infections, are dependent on the effector Tir. Phosphorylation of Tir(EPEC/CR) Y474/1 leads to recruitment of Nck and neural Wiskott-Aldrich syndrome protein (N-WASP) and strong actin polymerization in cultured cells. Tir(EPEC/CR) also contains an Asn-Pro-Tyr (NPY(454/1)) motif, which triggers weak actin polymerization. In EHEC the NPY(458) actin polymerization pathway is amplified by TccP/EspF(U), which is recruited to Tir via IRSp53 and/or insulin receptor tyrosine kinase substrate (IRTKS). Here we used C. rodentium to investigate the different Tir signalling pathways in vivo. Following infection with wild-type C. rodentium IRTKS, but not IRSp53, was recruited to the bacterial attachment sites. Similar results were seen after infection of human ileal explants with EHEC. Mutating Y471 or Y451 in Tir(CR) abolished recruitment of Nck and IRTKS respectively, but did not affect recruitment of N-WASP or A/E lesion formation. This suggests that despite their crucial role in actin polymerization in cultured cells the Tir:Nck and Tir:IRTKS pathways are not essential for N-WASP recruitment or A/E lesion formation in vivo. Importantly, wild-type C. rodentium out-competed the tir tyrosine mutants during mixed infections. These results uncouple the Tir:Nck and Tir:IRTKS pathways from A/E lesion formation in vivo but assign them an important in vivo role.
IGF-1R inhibition sensitizes breast cancer cells to ATM-Related Kinase (ATR) inhibitor and cisplatin
Resumo:
The complexity of the IGF-1 signalling axis is clearly a roadblock in targeting this receptor in cancer therapy. Here, we sought to identify mediators of resistance, and potential co-targets for IGF-1R inhibition. By using an siRNA functional screen with the IGF-1R tyrosine kinase inhibitor (TKI) BMS-754807 in MCF-7 cells we identified several genes encoding components of the DNA damage response (DDR) pathways as mediators of resistance to IGF-1R kinase inhibition. These included ATM and Ataxia Telangiectasia and RAD3-related kinase (ATR). We also observed a clear induction of DDR in cells that were exposed to IGF-1R TKIs (BMS-754807 and OSI-906) as indicated by accumulation of γ-H2AX, and phosphorylated Chk1. Combination of the IGF-1R/IR TKIs with an ATR kinase inhibitor VE-821 resulted in additive to synergistic cytotoxicity compared to either drug alone. In MCF-7 cells with stably acquired resistance to the IGF-1R TKI (MCF-7-R), DNA damage was also observed, and again, dual inhibition of the ATR kinase and IGF-1R/IR kinase resulted in synergistic cytotoxicity. Interestingly, dual inhibition of ATR and IGF-1R was more effective in MCF-7-R cells than parental cells. IGF-1R TKIs also potentiated the effects of cisplatin in a panel of breast cancer cell lines. Overall, our findings identify induction of DDR by IGF-1R kinase inhibition as a rationale for co-targeting the IGF-1R with ATR kinase inhibitors or cisplatin, particularly in cells with acquired resistance to TKIs.
Resumo:
Several different acquired resistance mechanisms of EGFR mutant lung adenocarcinoma to EGFR-tyrosine kinase inhibitor (TKI) therapy have been described, most recently transformation to small cell lung carcinoma (SCLC). We describe the case of a 46-year-old female with relapsed EGFR exon 19 deletion lung adenocarcinoma treated with erlotinib, and on resistance, cisplatin-pemetrexed. Liver rebiopsy identified an afatinib-resistant combined SCLC and non-small cell carcinoma with neuroendocrine morphology, retaining the EGFR exon 19 deletion. This case highlights acquired EGFR-TKI resistance through transformation to the high-grade neuroendocrine carcinoma spectrum and that that such transformation may not be evident at time of progression on TKI therapy.
Resumo:
The progressive elucidation of the molecular pathogenesis of cancer has fueled the rational development of targeted drugs for patient populations stratified by genetic characteristics. Here we discuss general challenges relating to molecular diagnostics and describe predictive biomarkers for personalized cancer medicine. We also highlight resistance mechanisms for epidermal growth factor receptor (EGFR) kinase inhibitors in lung cancer. We envisage a future requiring the use of longitudinal genome sequencing and other omics technologies alongside combinatorial treatment to overcome cellular and molecular heterogeneity and prevent resistance caused by clonal evolution.
Resumo:
Acquired resistance to selective FLT3 inhibitors is an emerging clinical problem in the treatment of FLT3-ITD(+) acute myeloid leukaemia (AML). The paucity of valid pre-clinical models has restricted investigations to determine the mechanism of acquired therapeutic resistance, thereby limiting the development of effective treatments. We generated selective FLT3 inhibitor-resistant cells by treating the FLT3-ITD(+) human AML cell line MOLM-13 in vitro with the FLT3-selective inhibitor MLN518, and validated the resistant phenotype in vivo and in vitro. The resistant cells, MOLM-13-RES, harboured a new D835Y tyrosine kinase domain (TKD) mutation on the FLT3-ITD(+) allele. Acquired TKD mutations, including D835Y, have recently been identified in FLT3-ITD(+) patients relapsing after treatment with the novel FLT3 inhibitor, AC220. Consistent with this clinical pattern of resistance, MOLM-13-RES cells displayed high relative resistance to AC220 and Sorafenib. Furthermore, treatment of MOLM-13-RES cells with AC220 lead to loss of the FLT3 wild-type allele and the duplication of the FLT3-ITD-D835Y allele. Our FLT3-Aurora kinase inhibitor, CCT137690, successfully inhibited growth of FLT3-ITD-D835Y cells in vitro and in vivo, suggesting that dual FLT3-Aurora inhibition may overcome selective FLT3 inhibitor resistance, in part due to inhibition of Aurora kinase, and may benefit patients with FLT3-mutated AML.
Resumo:
ZAP-70, CD38 and IGHV mutations have all been reported to have prognostic impact in chronic lymphocytic leukemia (CLL), both individually and in paired combinations. We aimed to determine whether the combination of all three factors provided more refined prognostic information concerning the treatment-free interval (TFI) from diagnosis. ZAP-70, CD38 and IGHV mutations were evaluated in 142 patients. Combining all three factors, the ZAP-70-/CD38-/Mutated group showed the longest median TFI (62 months, n = 37), ZAP-70+/CD38+/Unmutated cases the shortest (11 months, n = 37) and cases discordant for > or = 1 factor, an intermediate TFI (27 months, n = 68) (p = 0.006). Analysis of discordant cases revealed values that were otherwise masked when measuring single prognostic factors. The presence or absence of cytogenetic abnormalities did not explain the variability among discordant cases. Simultaneous analysis of ZAP-70, CD38 and IGHV mutations in CLL provides more discriminatory prediction of TFI than any factor alone.