11 resultados para Receiver tracking models
Resumo:
In this paper we propose a statistical model for detection and tracking of human silhouette and the corresponding 3D skeletal structure in gait sequences. We follow a point distribution model (PDM) approach using a Principal Component Analysis (PCA). The problem of non-lineal PCA is partially resolved by applying a different PDM depending of pose estimation; frontal, lateral and diagonal, estimated by Fisher's linear discriminant. Additionally, the fitting is carried out by selecting the closest allowable shape from the training set by means of a nearest neighbor classifier. To improve the performance of the model we develop a human gait analysis to take into account temporal dynamic to track the human body. The incorporation of temporal constraints on the model increase reliability and robustness.
Resumo:
Incorporating ecological processes and animal behaviour into Species Distribution Models (SDMs) is difficult. In species with a central resting or breeding place, there can be conflict between the environmental requirements of the 'central place' and foraging habitat. We apply a multi-scale SDM to examine habitat trade-offs between the central place, roost sites, and foraging habitat in . Myotis nattereri. We validate these derived associations using habitat selection from behavioural observations of radio-tracked bats. A Generalised Linear Model (GLM) of roost occurrence using land cover variables with mixed spatial scales indicated roost occurrence was positively associated with woodland on a fine scale and pasture on a broad scale. Habitat selection of radio-tracked bats mirrored the SDM with bats selecting for woodland in the immediate vicinity of individual roosts but avoiding this habitat in foraging areas, whilst pasture was significantly positively selected for in foraging areas. Using habitat selection derived from radio-tracking enables a multi-scale SDM to be interpreted in a behavioural context. We suggest that the multi-scale SDM of . M. nattereri describes a trade-off between the central place and foraging habitat. Multi-scale methods provide a greater understanding of the ecological processes which determine where species occur and allow integration of behavioural processes into SDMs. The findings have implications when assessing the resource use of a species at a single point in time. Doing so could lead to misinterpretation of habitat requirements as these can change within a short time period depending on specific behaviour, particularly if detectability changes depending on behaviour. © 2011 Gesellschaft für ökologie.
Resumo:
The least-mean-fourth (LMF) algorithm is known for its fast convergence and lower steady state error, especially in sub-Gaussian noise environments. Recent work on normalised versions of the LMF algorithm has further enhanced its stability and performance in both Gaussian and sub-Gaussian noise environments. For example, the recently developed normalised LMF (XE-NLMF) algorithm is normalised by the mixed signal and error powers, and weighted by a fixed mixed-power parameter. Unfortunately, this algorithm depends on the selection of this mixing parameter. In this work, a time-varying mixed-power parameter technique is introduced to overcome this dependency. A convergence analysis, transient analysis, and steady-state behaviour of the proposed algorithm are derived and verified through simulations. An enhancement in performance is obtained through the use of this technique in two different scenarios. Moreover, the tracking analysis of the proposed algorithm is carried out in the presence of two sources of nonstationarities: (1) carrier frequency offset between transmitter and receiver and (2) random variations in the environment. Close agreement between analysis and simulation results is obtained. The results show that, unlike in the stationary case, the steady-state excess mean-square error is not a monotonically increasing function of the step size. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
In human motion analysis, the joint estimation of appearance, body pose and location parameters is not always tractable due to its huge computational cost. In this paper, we propose a Rao-Blackwellized Particle Filter for addressing the problem of human pose estimation and tracking. The advantage of the proposed approach is that Rao-Blackwellization allows the state variables to be splitted into two sets, being one of them analytically calculated from the posterior probability of the remaining ones. This procedure reduces the dimensionality of the Particle Filter, thus requiring fewer particles to achieve a similar tracking performance. In this manner, location and size over the image are obtained stochastically using colour and motion clues, whereas body pose is solved analytically applying learned human Point Distribution Models.
Resumo:
We present a Spatio-temporal 2D Models Framework (STMF) for 2D-Pose tracking. Space and time are discretized and a mixture of probabilistic "local models" is learnt associating 2D Shapes and 2D Stick Figures. Those spatio-temporal models generalize well for a particular viewpoint and state of the tracked action but some spatio-temporal discontinuities can appear along a sequence, as a direct consequence of the discretization. To overcome the problem, we propose to apply a Rao-Blackwellized Particle Filter (RBPF) in the 2D-Pose eigenspace, thus interpolating unseen data between view-based clusters. The fitness to the images of the predicted 2D-Poses is evaluated combining our STMF with spatio-temporal constraints. A robust, fast and smooth human motion tracker is obtained by tracking only the few most important dimensions of the state space and by refining deterministically with our STMF.
Resumo:
Research into localization has produced a wealth of algorithms and techniques to estimate the location of wireless network nodes, however the majority of these schemes do not explicitly account for non-line of sight conditions. Disregarding this common situation reduces their accuracy and their potential for exploitation in real world applications. This is a particular problem for personnel tracking where the user's body itself will inherently cause time-varying blocking according to their movements. Using empirical data, this paper demonstrates that, by accounting for non-line of sight conditions and using received signal strength based Monte Carlo localization, meter scale accuracy can be achieved for a wrist-worn personnel tracking tag in a 120 m indoor office environment. © 2012 IEEE.
Resumo:
Processor architectures has taken a turn towards many-core processors, which integrate multiple processing cores on a single chip to increase overall performance, and there are no signs that this trend will stop in the near future. Many-core processors are harder to program than multi-core and single-core processors due to the need of writing parallel or concurrent programs with high degrees of parallelism. Moreover, many-cores have to operate in a mode of strong scaling because of memory bandwidth constraints. In strong scaling increasingly finer-grain parallelism must be extracted in order to keep all processing cores busy.
Task dataflow programming models have a high potential to simplify parallel program- ming because they alleviate the programmer from identifying precisely all inter-task de- pendences when writing programs. Instead, the task dataflow runtime system detects and enforces inter-task dependences during execution based on the description of memory each task accesses. The runtime constructs a task dataflow graph that captures all tasks and their dependences. Tasks are scheduled to execute in parallel taking into account dependences specified in the task graph.
Several papers report important overheads for task dataflow systems, which severely limits the scalability and usability of such systems. In this paper we study efficient schemes to manage task graphs and analyze their scalability. We assume a programming model that supports input, output and in/out annotations on task arguments, as well as commutative in/out and reductions. We analyze the structure of task graphs and identify versions and generations as key concepts for efficient management of task graphs. Then, we present three schemes to manage task graphs building on graph representations, hypergraphs and lists. We also consider a fourth edge-less scheme that synchronizes tasks using integers. Analysis using micro-benchmarks shows that the graph representation is not always scalable and that the edge-less scheme introduces least overhead in nearly all situations.
Resumo:
Background and objectives: Cognitive models suggest that attentional biases are integral in the maintenance of obsessive-compulsive symptoms (OCS). Such biases have been established experimentally in anxiety disorders; however, the evidence is unclear in Obsessive Compulsive disorder (OCD). In the present study, an eye-tracking methodology was employed to explore attentional biases in relation to OCS.
Methods: A convenience sample of 85 community volunteers was assessed on OCS using the Yale-Brown Obsessive Compulsive Scale-self report. Participants completed an eye-tracking paradigm where they were exposed to OCD, Aversive and Neutral visual stimuli. Indices of attentional bias were derived from the eye-tracking data.
Results: Simple linear regressions were performed with OCS severity as the predictor and eye-tracking measures of the different attentional biases for each of the three stimuli types were the criterion variables. Findings revealed that OCS severity moderately predicted greater frequency and duration of fixations on OCD stimuli, which reflect the maintenance attentional bias. No significant results were found in support of other biases.
Limitations: Interpretations based on a non-clinical sample limit the generalisability of the conclusions, although use of such samples in OCD research has been found to be comparable to clinical populations. Future research would include both clinical and sub-clinical participants.
Conclusions: Results provide some support for the theory of maintained attention in OCD attentional biases, as opposed to vigilance theory. Individuals with greater OCS do not orient to OCD stimuli any faster than individuals with lower OCS, but once a threat is identified, these individuals allocate more attention to OCS-relevant stimuli.
Resumo:
Oyster populations around the world have seen catastrophic decline which has been largely attributed to overexploitation, disease and pollution. While considerable effort and resources have been implemented into restoring these important environmental engineers, the success of oyster populations is often limited by poor understanding of site-specific dispersal patterns of propagules. Water-borne transport is a key factor controlling or regulating the dispersal of the larval stage of benthic marine invertebrates which have limited mobility. The distribution of the native oyster Ostrea edulis in Strangford Lough, Northern Ireland, together with their densities and population structure at subtidal and intertidal sites has been documented at irregular intervals between 1997 and 2013. This paper revisits this historical data and considers whether different prevailing environmental conditions can be used to explain the distribution, densities and population structure of O. edulis in Strangford Lough. The approach adopted involved comparing predictive 2D hydrodynamic models coupled with particle tracking to simulate the dispersal of oyster larvae with historical and recent field records of the distribution of both subtidal and intertidal, populations since 1995. Results from the models support the hypothesis that commercial stocks of O. edulis introduced into Strangford Lough in the 1990s resulted in the re-establishment of wild populations of oysters in the Northern Basin which in turn provided a potential source of propagules for subtidal populations. These results highlight that strategic site selection (while inadvertent in the case of the introduced population in 1995) for the re-introduction of important shellfish species can significantly accelerate their recovery and restoration.
Resumo:
In this work, we propose a biologically inspired appearance model for robust visual tracking. Motivated in part by the success of the hierarchical organization of the primary visual cortex (area V1), we establish an architecture consisting of five layers: whitening, rectification, normalization, coding and polling. The first three layers stem from the models developed for object recognition. In this paper, our attention focuses on the coding and pooling layers. In particular, we use a discriminative sparse coding method in the coding layer along with spatial pyramid representation in the pooling layer, which makes it easier to distinguish the target to be tracked from its background in the presence of appearance variations. An extensive experimental study shows that the proposed method has higher tracking accuracy than several state-of-the-art trackers.