5 resultados para Reactive nitrogen


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The accepted paradigm for radiation effects is that direct DNA damage via energy deposition is required to trigger the downstream biological consequences. The radiation-induced bystander effect is the ability of directly irradiated cells to interact with their nonirradiated neighbors, which can then show responses similar to those of the targeted cells. p53 binding protein 1 (53BP1) forms foci at DNA double-strand break sites and is an important sensor of DNA damage. This study used an ionizing radiation microbeam approach that allowed us to irradiate specifically the nucleus or cytoplasm of a cell and quantify response in irradiated and bystander cells by studying ionizing radiation-induced foci (IRIF) formation of 53BP1 protein. Our results show that targeting only the cytoplasm of a cell is capable of eliciting 53BP1 foci in both hit and bystander cells, independently of the dose or the number of cells targeted. Therefore, direct DNA damage is not required to trigger 53BP1 IRIF. The use of common reactive oxygen species and reactive nitrogen species (RNS) inhibitors prevent the formation of 53BP1 foci in hit and bystander cells. Treatment with filipin to disrupt membrane-dependent signaling does not prevent the cytoplasmic irradiation-induced 53BP1 foci in the irradiated cells, but it does prevent signaling to bystander cells. Active mitochondrial function is required for these responses because pseudo-rho(0) cells, which lack mitochondrial DNA, could not produce a bystander signal, although they could respond to a signal from normal rho(+) cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The relationship between the biological activity of NO and its chemistry is complex. The objectives of this study were to investigate the influence of oxygen tension on the cytotoxicity of the NO• donor DETA/NO and to determine the effects of oxygen tension on the key RNS (reactive nitrogen species) responsible for any subsequent toxicity. The findings presented in this study indicate that the DETA/NO-mediated cytotoxic effects were enhanced under hypoxic conditions. Further investigations revealed that neither ONOO⁻ (peroxynitrite) nor nitroxyl was generated. Fluorimetric analysis in the presence of scavengers suggest for the first time that another RNS, dinitrogen trioxide may be responsible for the cytotoxicity with DETA/NO. Results showed destabilization of HIF (hypoxia inducible factor)-1α and depletion of GSH levels following the treatment with DETA/NO under hypoxia, which renders cells more susceptible to DETA/NO cytotoxicity, and could account for another mechanism of DETA/NO cytotoxicity under hypoxia. In addition, there was significant accumulation of nuclear p53, which showed that p53 itself might be a target for S-nitrosylation following the treatment with DETA/NO. Both the intrinsic apoptotic pathway and the Fas extrinsic apoptotic pathway were also activated. Finally, GAPDH (glyceraldehyde-3-phosphate dehydrogenase) is another important S-nitrosylated protein that may possibly play a key role in DETA/NO-mediated apoptosis and cytotoxicity. Therefore this study elucidates further mechanisms of DETA/NO mediated cytotoxicity with respect to S-nitrosylation that is emerging as a key player in the signalling and detection of DETA/NO-modified proteins in the tumour microenvironment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We unravel the complex chemistry in both the neutral and ionic systems of a radio-frequency-driven atmospheric-pressure plasma in a helium-oxygen mixture (He-0.5% O) with air impurity levels from 0 to 500 ppm of relative humidity from 0% to 100% using a zero-dimensional, time-dependent global model. Effects of humid air impurity on absolute densities and the dominant production and destruction pathways of biologically relevant reactive neutral species are clarified. A few hundred ppm of air impurity crucially changes the plasma from a simple oxygen-dependent plasma to a complex oxygen-nitrogen-hydrogen plasma. The density of reactive oxygen species decreases from 10 to 10 cm, which in turn results in a decrease in the overall chemical reactivity. Reactive nitrogen species (10 cm ), atomic hydrogen and hydroxyl radicals (10-10 cm) are generated in the plasma. With 500 ppm of humid air impurity, the densities of positively charged ions and negatively charged ions slightly increase and the electron density slightly decreases (to the order of 10 cm). The electronegativity increases up to 2.3 compared with 1.5 without air admixture. Atomic hydrogen, hydroxyl radicals and oxygen ions significantly contribute to the production and destruction of reactive oxygen and reactive nitrogen species. © 2013 IOP Publishing Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of a radio-frequency driven, microscale non thermal atmospheric pressure plasma jet operated in helium with vol. 0.3% molecular oxygen gas admixture, on PC-3 prostate cancer cells has been investigated. The viability of cells exposed to the plasma was found to decrease with increasing plasma exposure time, with apoptosis through caspase and PARP cleavage being observed. High concentrations of nitrite and nitrate were detected in growth media exposed to the plasma and were found to increase in a time dependent manner post exposure. This indicates a slow release of reactive nitrogen species into the growth media, which is likely to influence cellular response to plasma exposure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports an experimental investigation of converting waste medium density fibreboard (MDF) sawdust into chars and activated carbon using chemical activation and thermal carbonisation processes. The MDF sawdust generated during the production of architectural mouldings was characterised and found to have unique properties in terms of fine particle size and high particle density. It also has a high content of urea formaldehyde resin used as a binder in the manufacturing of MDF board. Direct thermal carbonisation and chemical activation of the sawdust by metal impregnation and acid (phosphoric acid) treatment prior to pyrolysis treatment were carried out. The surface morphology of the raw dust, its chars and activated carbon were examined using scanning electron microscopy (SEM). Adsorptive properties and total pore volume of the materials were also analysed using the BET nitrogen adsorption method. Liquid adsorption of a reactive dye (Levafix Brilliant red E-4BA) by the derived sawdust carbon was investigated in batch isothermal adsorption process and the results compared to adsorption on to a commercial activated carbon (Filtrasorb F400). The MDF sawdust carbon exhibited in general a very low adsorption capacity towards the reactive dye, and physical characterisation of the carbon revealed that the conventional chemical activation and thermal carbonisation process were ineffective in developing a microporous structure in the dust particles. The small size of the powdery dust, the high particle density, and the presence of the urea formaldehyde resin all contributed to the difficulty of developing a proper porous structure during the thermal and chemical activation process. Finally, activation of the dust material in a consolidated form (cylindrical pellet) only achieved very limited improvement in the dye adsorption capacity. This original study, reporting some unexpected outcomes, may serve as a stepping-stone for future investigations of recycle and reuse of the waste MDF sawdust which is becoming an increasing environmental and cost liability. (C) 2004 Elsevier Ltd. All rights reserved.