84 resultados para Reactive Oxygen


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has become clear over the last 15-20 years that the immediate effect of a wide range of environmental stresses, and of infection, on vascular plants is to increase the formation of reactive oxygen species (ROS) and to impose oxidative stress on the cells. Since 1994, sufficient examples of similar responses in a broad range of marine macroalgae have been described to show that reactive oxygen metabolism also underlies the mechanisms by which seaweeds respond (and become resistant) to stress and infection. Desiccation, freezing, low temperatures, high light, ultraviolet radiation, and heavy metals all tend to result in a gradual and continued buildup of ROS because photosynthesis is inhibited and excess energy results in the formation of singlet oxygen. The response to other stresses (infection or oligosaccharides which signal that infection is occurring, mechanical stress, hyperosmotic shock) is quite different-a more rapid and intense, but short-lived production of ROS, described as an

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the existence of a tip-high reactive oxygen species (ROS) gradient in growing Fucus serratus zygotes, using both 5-(and 6-) chloromethyl-2',7'-dichlorodihydrofluorescein and nitroblue tetrazolium staining to report ROS generation. Suppression of the ROS gradient inhibits polarized zygotic growth; conversely, exogenous ROS generation can redirect zygotic polarization following inhibition of endogenous ROS. Confocal imaging of fluo-4 dextran distributions suggests that the ROS gradient is interdependent on the tip-high [Ca2+](cyt) gradient which is known to be associated with polarized growth. Our data support a model in which localized production of ROS at the rhizoid tip stimulates formation of a localized tip-high [Ca2+](cyt) gradient. Such modulation of intracellular [Ca2+](cyt) signals by ROS is a common motif in many plant and algal systems and this study extends this mechanism to embryogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Burkholderia cepacia complex comprises groups of genomovars (genotypically distinct strains with very similar phenotypes) that have emerged as important opportunistic pathogens in cystic fibrosis (CF) patients. The inflammatory response against bacteria in the airways of CF individuals is dominated by polymorphonuclear cells and involves the generation of oxidative stress, which leads to further inflammation and tissue damage. Bacterial catalase, catalase-peroxidase and superoxide dismutase activities may contribute to the survival of B. cepacia following exposure to reactive oxygen metabolites generated by host cells in response to infection. In the present study the authors investigated the production of catalase, peroxidase and SOD by isolates belonging to various genomovars of the B. cepacia complex. Production of both catalase and SOD was maximal during late stationary phase in almost all isolates examined. Native PAGE identified 13 catalase electrophoretotypes and two SOD electrophoretotypes (corresponding to an Fe-SOD class) in strains belonging to the six genomovars of the B. cepacia complex. Seven out of 11 strains displaying high-level survival after H(2)O(2) treatment in vitro had a bifunctional catalase/peroxidase, and included all the genomovar III strains examined. These isolates represent most of the epidemic isolates that are often associated with the cepacia syndrome. The majority of the isolates from all the genomovars were resistant to extracellular O(-)(2), while resistance to intracellularly generated O(-)(2)was highly variable and could not be correlated with the detected levels of SOD activity. Altogether the results suggest that resistance to toxic oxygen metabolites from extracellular sources may be a factor involved in the persistence of B. cepacia in the airways of CF individuals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several authors have shown that neutrophil generation of reactive oxygen species (ROS) declines with advancing age. Similar changes have also been suggested in monocytes. In both cases alterations in second messenger activity have been implicated as the most likely explanation for these observations. The aim of this study was to investigate the effect of age on phagocyte ROS generation, stimulated by the direct activation of protein kinase C (PKC). Venous blood was drawn from normal healthy subjects, cells were separated on a double density gradient into mononuclear and polymorphonuclear (pmn) cells. Phorbol myristate acetate (PMA) was employed as a cell stimulus. Superoxide generation was measured by cytochrome c reduction and myeloperoxidase (MPO) products by measurement of peak luminol chemiluminescence (CL). Fifty-eight subjects, 25 males and 33 females, were studied, median age 49 years (range 26-88 years). Polymorphonuclear cell superoxide generation was significantly higher in males and there was a trend towards higher pmn MPO product generation in males. Using Spearman's ranked correlation coefficient, monocyte superoxide generation was negatively correlated with age (r = -0.473, P <0.001). No changes in the generation of MPO products was found. There were also trends towards a negative correlation of pmn cytochrome c reduction and peak luminol CL with age in males but not females. Since PMA directly activates protein kinase C, reduced monocyte superoxide generation with increasing age appears to be related to alterations in the ROS generating system downstream of the cell receptor. Impaired monocyte superoxide generation may have implications for non-specific defence against certain infections and early tumour growth in the elderly. Factors underlying these changes in monocyte function therefore require further study.