139 resultados para Rayleigh scattering


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A proof-of-concept study was reported on analysis of antigen–antibody recognition based on resonant Rayleigh scattering response of single Au nanoparticles in an imaging chamber. As benefited by a traditional dark-field microscope and a spectrograph, individual Au nanoparticles (30 nm) were observed with high signal-to-noise ratio and they were effectively utilized to monitor changes in refractive index induced by specific binding of the adsorbates. Using PSA antigen as a model, a LSPR ?max shift of about 2.85 nm was recorded for a molecular binding corresponding to 0.1 pg ml-1 of the protein biomarker. This result successfully demonstrates a non-labeling detection system for proteins as well as thousands of different chemical or biological species, and it possesses a great potential as a sensitive, on-chip and multiplexing detection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A proof-of-concept study was reported on analysis of antigen-antibody recognition based on resonant Rayleigh scattering response of single Au nanoparticles on a microimaging chamber. As benefited by a traditional dark-field microscope and a spectrograph, tiny 30 nm Au nanoparticles were effectively used as nanosensors to monitor changes in refractive index induced by every single binding of the adsorbates. The individual Au nanoparticles were observed with very high signal-to-noise ratio, and a LSPR ?max shift of about 2.5 nm accounting for the detection of PSA antigen with concentration as low as 0.1 pg ml-1 was recorded. This resulted in the successful demonstration of a non-labelling detection system for proteins as well as thousands of different chemical or biological species with possibility of miniaturization and multiplexing scheme.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have used optical Rayleigh and Thomson scattering to investigate the expansion dynamics of laser induced plasma in atmospheric helium and to map its electron parameters both in time and space. The plasma is created using 9 ns duration, 140 mJ pulses from a Nd:YAG laser operating at 1064 nm, focused with a 10 cm focal length lens, and probed with 7 ns, 80 mJ, and 532 nm Nd:YAG laser pulses. Between 0.4 μs and 22.5 μs after breakdown, the electron density decreases from 3.3 × 1017 cm−3 to 9 × 1013 cm−3, while the temperature drops from 3.2 eV to 0.1 eV. Spatially resolved Thomson scattering data recorded up to 17.5 μs reveal that during this time the laser induced plasma expands at a rate given by R ∼ t0.4 consistent with a non-radiative spherical blast wave. This data also indicate the development of a toroidal structure in the lateral profile of both electron temperature and density. Rayleigh scattering data show that the gas density decreases in the center of the expanding plasma with a central scattering peak reemerging after about 12 μs. We have utilized a zero dimensional kinetic global model to identify the dominant particle species versus delay time and this indicates that metastable helium and the He2 + molecular ion play an important role.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Raman satellites have been observed in the scattering of a Nd:YAG laser (532 nm) from a laser-ablated Mg plasma plume. We identify them as originating from transitions between the fine-structure components of the metastable 3s3p P-3(0,1,2) level of Mg. We have calculated the cross sections for Raman and Rayleigh scattering from the metastable state. Comparison of the expected ratio of the satellites to the Rayleigh peak indicates the changing population fraction of the metastable states in the plume.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The H+NO2 titration scheme for the determination of atomic hydrogen densities within a microwave excited flow tube reactor has been investigated by laser-induced fluorescence spectroscopy in the vacuum UV. Absolute hydrogen densities are determined on the basis of calibration by Rayleigh scattering from argon. The measurement is performed at a gas mixture containing 0.5% of D2 added to the main gas H2. The ground state density of the hydrogen atoms generated in the flow tube reactor was inferred from the fluorescence radiation of the spectrally shifted optically thin D-Lyman-a transition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Herein, we present the use of a single gold nanorod sensor for detection of diseases on an antibody-functionalized surface, based on antibody–antigen interaction and the localized surface plasmon resonance (LSPR) ?max shifts of the resonant Rayleigh light scattering spectra. By replacing the cetyltrimethylammonium bromide (CTAB), a tightly packed self-assembled monolayer of HS(CH2)11(OCH2CH2)6OCH2COOH(OEG6) has been successfully formed on the gold nanorod surface prior to the LSPR sensing, leading to the successful fabrication of individual gold nanorod immunosensors. Using prostate specific antigen (PSA) as a protein biomarker, the lowest concentration experimentally detected was as low as 111 aM, corresponding to a 2.79 nm LSPR ?max shift. These results indicate that the detection platform is very sensitive and outperforms detection limits of commercial tests for PSA so far. Correlatively, its detection limit can be equally compared to the assays based on DNA biobarcodes. This study shows that a gold nanorod has been used as a single nanobiosensor to detect antigens for the first time; and the detection method based on the resonant Rayleigh scattering spectrum of individual gold nanorods enables a simple, label-free detection with ultrahigh sensitivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A full-electron coupled-state treatment of positronium (Ps)- inert gas scattering is developed within the context of the frozen target approximation. Calculations are performed for Ps(Is) scattering by Ne and Ar in the impact energy range 0-40 eV using coupled pseudostate expansions consisting of nine and 22 Ps states. The purpose of the pseudostates is primarily to represent ionization of the Ps which is found to be a major process at the higher energies. First Born estimates of target excitation are used to complement the frozen target results. The available experimental data are discussed in detail. It is pointed out that the very low energy measurements (less than or equal to2 eV) correspond to the momentum transfer cross section sigma(mom) and not to the elastic cross section sigma(el). Calculation shows that sigma(mom), and sigma(el) diverge very rapidly with increasing energy and consequently comparisons of the low-energy data with ITel can be very misleading. Agreement between the calculations and the low-energy measurements of anion as well;as higher energy (greater than or equal to15 eV) beam measurements of the total cross section, is less than satisfactory. Results for Ps(1s) scattering by Kr and Xe in the static-exchange approximation are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is shown that virtual H- formation has a profound effect upon low-energy Ps(1s)-H(1s) scattering, yet H- formation only accounts for about 10% of the total cross section just above threshold. Infinite series of Rydberg resonances converging on to the H- formation threshold are seen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calculations are reported for positronium (Ps) scattering by atomic hydrogen (H) in the energy range 0-6.5 eV in a coupled- pseudostate approximation in which excitation and ionization channels of both the Ps and the H are taken into account. The approximation contains an accurate representation of the van der Waals coefficient. Results are presented for phase shifts, scattering lengths, effective ranges, and various cross sections including partial wave, total, and ortho-para conversion cross sections. An analysis of the possible spin transitions is provided and the energy of the positronium hydride (PsH) bound state is determined. Substantial differences are found from earlier work within the frozen target approximation, now clearly confirming the importance of target excitation channels. Good agreement is obtained with recent calculations of S-wave phase shifts and scattering lengths using the stabilization method. Convergence to the exact binding energy for PsH appears to be slow. Resonances corresponding to unstable states of the positron orbiting H- are seen in the electronic spin singlet partial waves. The importance of the H- formation channel is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results are presented for e(+) scattering by H- in the impact energy range 0less than or equal toE(0)less than or equal to10 eV. These include integrated cross sections for Ps formation in the 1s, 2s, and 2p states, as well as in an aggregate of states with ngreater than or equal to3, and for direct ionization. Differential cross sections for Ps formation in the 1s, 2s, and 2p states are also exhibited. The calculations are based on a coupled pseudostate approach employing 19 Ps pseudostates centered on the e(+). It is found that Ps formation in the 2p state dominates that in the 1s or 2s states below 8 eV, that formation in states with ngreater than or equal to3 exceeds the sum of the n=1 and n=2 cross sections above 2.5 eV, and that direct ionization outstrips total Ps formation above 6.3 eV. The threshold law (E-0-->0) for exothermic Ps formation, which includes the cases Ps(1s), Ps(2s), and Ps(2p), is shown to be 1/E-0.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report cross sections for Ps(1s)-Li(2s) scattering in the energy range up to 30 eV. The calculations have been carried out in a coupled state approximation. The Ps states consist of both eigenstates and pseudostates. the latter to allow for ionization of the Ps. The atom is treated as a frozen core represented by it model potential which supports the valence orbitals. The coupled state expansion includes only the 2s and 2p states of the atom as well as in unphysical Is state which exists in the model potential. The inclusion of this Is state is necessary in order to avoid pronounced false pseudostructure. Results are presented for excitation and ionization of the Ps as well as collisions in which the Ps(1s) remains unchanged. These results also differentiate between the case where the Li(2s) remains unexcited and where it is excited to the 2p level. (c) 2005 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The scattering of electrons with kinetic energies down to a few meV by para-xylene and para-difluorobenzene has been observed experimentally with an electron beam energy resolution of 0.95 to 1.5 meV (full width half maximum). At low electron energies the collisions can be considered as cold scattering events because the de Broglie wavelength of the electron is considerably larger than the target dimensions. The scattering cross sections measured rise rapidly at low energy due to virtual state scattering. The nature of this scattering process is discussed using s- and p-wave phase shifts derived from the experimental data. Scattering lengths are derived of, respectively, -9.5+/-0.5 and -8.0+/-0.5 a.u. for para-xylene and para-difluorobenzene. The virtual state effect is interpreted in terms of nuclear diabatic and partially adiabatic models, involving the electronic and vibronic symmetries of the unoccupied orbitals in the target species. The concept of direct and indirect virtual state scattering is introduced, through which the present species, in common with carbon dioxide and benzene, scatter through an indirect virtual state process, whereas other species, such as perfluorobenzene, scatter through a direct process. (C) 2005 American Institute of Physics.