93 resultados para Rapi Manufacturing
Resumo:
The influence of manufacturing tolerance on direct operating cost (DOC) is extrapolated from an engine nacelle to be representative of an entire aircraft body. Initial manufacturing tolerance data was obtained from the shop floor at Bombardier Aerospace Shorts, Belfast while the corresponding costs were calculated according to various recurring elements such as basic labour and overtime labour, rework, concessions, and redeployment; along with the non-recurrent costs due to tooling and machinery, etc. The relation of tolerance to cost was modelled statistically so that the cost impact of tolerance change could be ascertained. It was shown that a relatively small relaxation in the assembly and fabrication tolerances of the wetted surfaces resulted in reduced costs of production that lowered aircraft DOC, as the incurred drag penalty was predicted and taken into account during the optimisation process.
Resumo:
Up until now, aircraft surface smoothness requirements have been aerodynamically driven with tighter manufacturing tolerance to minimize drag, that is, the tighter the tolerance, the higher is the assembly cost in the process of manufacture. In the current status of commercial transport aircraft operation, it can be seen that the unit cost contributes to the aircraft direct operating cost considerably more than the contribution made by the cost of block fuel consumed for the mission profile. The need for a customer-driven design strategy to reduce direct operating cost by reducing aircraft cost through manufacturing tolerance relaxation at the wetted surface without unduly penalizing parasite drag is investigated. To investigate this, a preliminary study has been conducted at 11 key manufacturing features on the surface assembly of an isolated nacelle. In spite of differences in parts design and manufacture, the investigated areas associated with the assembly of nacelles are typical of generic patterns in the assembly of other components of aircraft. The study is to be followed up by similar studies extended to lifting surfaces and fuselage
Resumo:
The work presented is concerned with the estimation of manufacturing cost at the concept design stage, when little technical information is readily available. The work focuses on the nose cowl sections of a wide range of engine nacelles built at Bombardier Aerospace Shorts of Belfast. A core methodology is presented that: defines manufacturing cost elements that are prominent; utilises technical parameters that are highly influential in generating those costs; establishes the linkage between these two; and builds the associated cost estimating relations into models. The methodology is readily adapted to deal with both the early and more mature conceptual design phases, which thereby highlights the generic, flexible and fundamental nature of the method. The early concept cost model simplifies cost as a cumulative element that can be estimated using higher level complexity ratings, while the mature concept cost model breaks manufacturing cost down into a number of constituents that are each driven by their own specific drivers. Both methodologies have an average error of less that ten percent when correlated with actual findings, thus achieving an acceptable level of accuracy. By way of validity and application, the research is firmly based on industrial case studies and practice and addresses the integration of design and manufacture through cost. The main contribution of the paper is the cost modelling methodology. The elemental modelling of the cost breakdown structure through materials, part fabrication, assembly and their associated drivers is relevant to the analytical design procedure, as it utilises design definition and complexity that is understood by engineers.