3 resultados para Randomness
Resumo:
Due to the variability and stochastic nature of wind power system, accurate wind power forecasting has an important role in developing reliable and economic power system operation and control strategies. As wind variability is stochastic, Gaussian Process regression has recently been introduced to capture the randomness of wind energy. However, the disadvantages of Gaussian Process regression include its computation complexity and incapability to adapt to time varying time-series systems. A variant Gaussian Process for time series forecasting is introduced in this study to address these issues. This new method is shown to be capable of reducing computational complexity and increasing prediction accuracy. It is further proved that the forecasting result converges as the number of available data approaches innite. Further, a teaching learning based optimization (TLBO) method is used to train the model and to accelerate
the learning rate. The proposed modelling and optimization method is applied to forecast both the wind power generation of Ireland and that from a single wind farm to show the eectiveness of the proposed method.
Resumo:
This paper considers a wirelessly powered wiretap channel, where an energy constrained multi-antenna information source, powered by a dedicated power beacon, communicates with a legitimate user in the presence of a passive eavesdropper. Based on a simple time-switching protocol where power transfer and information transmission are separated in time, we investigate two popular multi-antenna transmission schemes at the information source, namely maximum ratio transmission (MRT) and transmit antenna selection (TAS). Closed-form expressions are derived for the achievable secrecy outage probability and average secrecy rate for both schemes. In addition, simple approximations are obtained at the high signal-to-noise ratio (SNR) regime. Our results demonstrate that by exploiting the full knowledge of channel state information (CSI), we can achieve a better secrecy performance, e.g., with full CSI of the main channel, the system can achieve substantial secrecy diversity gain. On the other hand, without the CSI of the main channel, no diversity gain can be attained. Moreover, we show that the additional level of randomness induced by wireless power transfer does not affect the secrecy performance in the high SNR regime. Finally, our theoretical claims are validated by the numerical results.
Resumo:
This paper presents a thorough experimental study on key generation principles, i.e. temporal variation, channel reciprocity, and spatial decorrelation, via a testbed constructed by using wireless open-access research platform (WARP). It is the first comprehensive study through (i) carrying out a number of experiments in different multipath environments, including an anechoic chamber, a reverberation chamber and an indoor office environment, which represents little, rich, and moderate multipath, respectively; (ii) considering static, object moving, and mobile scenarios in these environments, which represents different levels of channel dynamicity; (iii) studying two most popular channel parameters, i.e., channel state information and received signal strength. Through results collected from over a hundred tests, this paper offers insights to the design of a secure and efficient key generation system. We show that multipath is essential and beneficial for key generation as it increases the channel randomness. We also find that the movement of users/objects can help introduce temporal variation/randomness and help users reach an agreement on the keys. This paper complements existing research by experiments constructed by a new hardware platform.