64 resultados para Rain forest


Relevância:

60.00% 60.00%

Publicador:

Resumo:

During the last decade Quaternary pollen analysis has developed towards improved pollen-taxonomical precision, automated pollen identification and more rigorous definition of pollen assemblage zones. There have been significant efforts to model the spatial representation of pollen records in lake sediments which is important for more precise interpretation of the pollen records in terms of past vegetation patterns. We review the difficulties in matching modelled post-glacial plant migration patterns with pollen-based palaeorecords and discuss the potential of DNA analysis of pollen to investigate the ancestry and past migration pathways of the plants. In population ecology there has been an acceleration of the widely advocated conceptual advance of pollen-analytical research from vaguely defined ‘environmental reconstructions’ towards investigating more precisely defined ecological problems aligned with the current ecological theories. Examples of such research have included an increasing number of investigations about the ecological impacts of past disturbances, often integrating pollen records with other palaeoecological data. Such an approach has also been applied to incorporate a time perspective to the questions of ecosystem restoration, nature conservation and forest management. New lines of research are the use of pollen analysis to study long-term patterns of vegetation diversity, such as the role of glacial-age vegetation fragmentation as a cause of Amazonian rain forest diversity, and to investigate links between pollen richness and past plant diversity. Palaeoclimatological use of pollen records has become more quantitative and has included more precise and rigorous testing of pollen-climate calibration models with modern climate data. These tests show the approximate nature of the models and warn against a too straightforward climatic interpretation of the small-scale variation in reconstructions. Pollenbased climate reconstructions over the Late Glacial–early Holocene boundary have indicated that pollen-stratigraphical changes have been rapid with no evidence for response lags. This does not rule out the possibility of migrational disequilibrium, however, as the rapid changes may be mostly due to nonmigrational responses of existing vegetation. It is therefore difficult to assess whether the amplitude of reconstructed climate change reflects real climate change. Other outstanding problems remain the obscure relationship of pollen production and climate, the role of human impact and other nonclimatic factors, and nonanalogue situations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The southern fringes of the South American landmass provide a rare opportunity to examine the development of moorland vegetation with sparse tree cover in a wet, cool temperate climate of the Southern Hemisphere. We present a record of changes in vegetation over the past 17,000 years, from a lake in extreme southern Chile (Isla Santa Inés, Magallanes region, 53°38.97S; 72°25.24W), where human influence on vegetation is negligible. The western archipelago of Tierra del Fuego remained treeless for most of the Lateglacial period; Lycopodium magellanicum, Gunnera magellanica and heath species dominated the vegetation. Nothofagus may have survived the last glacial maximum at the eastern edge of the Magellan glaciers from where it spread southwestwards and established in the region at around 10,500 cal. yr BP. Nothofagus antarctica was likely the earlier colonizing tree in the western islands, followed shortly after by Nothofagus betuloides. At 9000 cal. yr BP moorland communities expanded at the expense of Nothofagus woodland. Simultaneously, Nothofagus species shifted to dominance of the evergreen Nothofagus betuloides and the Magellanic rain forest established in the region. Rapid and drastic vegetation changes occurred at 5200 cal. yr BP, after the Mt Burney MB2 eruption, including the expansion and establishment of Pilgerodendron uviferum and the development of mixed Nothofagus-Pilgerodendron-Drimys woodland. Scattered populations of Nothofagus, as they occur today in westernmost Tierra del Fuego may be a good analogue for Nothofagus populations during the Lateglacial in eastern sites.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent research in Europe, Africa, and Southeast Asia suggests that we can no longer assume a direct and exclusive link between anatomically modern humans and behavioral modernity (the 'human revolution'), and assume that the presence of either one implies the presence of the other: discussions of the emergence of cultural complexity have to proceed with greater scrutiny of the evidence on a site-by-site basis to establish secure associations between the archaeology present there and the hominins who created it. This paper presents one such case study: Niah Cave in Sarawak on the island of Borneo, famous for the discovery in 1958 in the West Mouth of the Great Cave of a modern human skull, the 'Deep Skull,' controversially associated with radiocarbon dates of ca. 40,000 years before the present. A new chronostratigraphy has been developed through a re-investigation of the lithostratigraphy left by the earlier excavations, AMS-dating using three different comparative pre-treatments including ABOX of charcoal, and U-series using the Diffusion-Absorption model applied to fragments of bones from the Deep Skull itself. Stratigraphic reasons for earlier uncertainties about the antiquity of the skull are examined, and it is shown not to be an `intrusive' artifact. It was probably excavated from fluvial-pond-desiccation deposits that accumulated episodically in a shallow basin immediately behind the cave entrance lip, in a climate that ranged from times of comparative aridity with complete desiccation, to episodes of greater surface wetness, changes attributed to regional climatic fluctuations. Vegetation outside the cave varied significantly over time, including wet lowland forest, montane forest, savannah, and grassland. The new dates and the lithostratigraphy relate the Deep Skull to evidence of episodes of human activity that range in date from ca. 46,000 to ca. 34,000 years ago. Initial investigations of sediment scorching, pollen, palynomorphs, phytoliths, plant macrofossils, and starch grains recovered from existing exposures, and of vertebrates from the current and the earlier excavations, suggest that human foraging during these times was marked by habitat-tailored hunting technologies, the collection and processing of toxic plants for consumption, and, perhaps, the use of fire at some forest-edges. The Niah evidence demonstrates the sophisticated nature of the subsistence behavior developed by modern humans to exploit the tropical environments that they encountered in Southeast Asia, including rainforest. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper examines the degree to which tree-associated Coleoptera (beetles) and pollen could be used to predict the degree of ‘openness’ in woodland. The results from two modern insect and pollen analogue studies from ponds at Dunham Massey, Cheshire and Epping Forest, Greater London are presented. We explore the reliability of modern pollen rain and sub-fossil beetle assemblages to represent varying degrees of canopy cover for up to 1000m from a sampling site. Modern woodland canopy structure around the study sites has been assessed using GIS-based mapping at increasing radial distances as an independent check on the modern insect and pollen data sets. These preliminary results suggest that it is possible to use tree-associated Coleoptera to assess the degree of local vegetation openness. Additionally, it appears that insect remains may indicate the relative intensity of land use by grazing animals. Our results also suggest most insects are collected from within a 100m to 200m radius of the sampling site. The pollen results suggest that local vegetation and density of woodland in the immediate area of the sampling site can have a strong role in determining the pollen signal.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human activity has undoubtedly had a major impact on Holocene forested ecosystems, with the concurrent expansion of plants and animals associated with cleared landscapes and pasture, also known as 'culture-steppe'. However, this anthropogenic perspective may have underestimated the contribution of autogenic disturbance (e.g. wind-throw, fire), or a mixture of autogenic and anthropogenic processes, within early Holocene forests. Entomologists have long argued that the north European primary forest was probably similar in structure to pasture woodland. This idea has received support from the conservation biologist Frans Vera, who has recently strongly argued that the role of large herbivores in maintaining open forests in the primeval landscapes of Europe has been seriously underestimated. This paper reviews this debate from a fossil invertebrate perspective and looks at several early Holocene insect assemblages. Although wood taxa are indeed important during this period, species typical of open areas and grassland and dung beetles, usually associated with the dung of grazing animals, are persistent presences in many early woodland faunas. We also suggest that fire and other natural disturbance agents appear to have played an important ecological role in some of these forests, maintaining open areas and creating open vegetation islands within these systems. More work, however, is required to ascertain the role of grazing animals, but we conclude that fossil insects have a significant contribution to make to this debate. This evidence has fundamental implications in terms of how the palaeoecological record is interpreted, particularly by environmental archaeologists and palaeoecologists who may be more interested in identifying human-environment interactions rather than the ecological processes which may be preserved within palaeoecological records.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new review of our knowledge of the ancient forest beetle fauna from Holocene archaeological and palaeoecological sites in Great Britain and Ireland. It examines the colonisation, dispersal and decline of beetle species, highlighting the scale and nature of human activities in the shaping of the landscape of the British Isles. In particular, the paper discusses effects upon the insect fauna, and examines in detail the fossil record from the Humberhead Levels, eastern England. It discusses the local extirpation of up to 40 species in Britain and 15 species in Ireland. An evaluation of the timing of extirpations is made, suggesting that many species in Britain disappear from the fossil record between c. 3000 cal BC and 1000 cal BC (c. 5000-3000 cal BP), although some taxa may well have survived until considerably later. In Ireland, there are two distinct trends, with a group of species which seem to be absent after c. 2000 cal BC (c. 4000 cal BP) and a further group which survives until at least as late as the medieval period. The final clearance of the Irish landscape over the last few hundred years was so dramatic, however, that some species which are not especially unusual in a British context were decimated. Reasons behind the extirpation of taxa are examined in detail, and include a combination of forest clearance and human activities, isolation of populations, lack of temporal continuity of habitats, edaphic and competition factors affecting distribution of host trees (particularly pine), lack of forest fires and a decline in open forest systems. The role of climate change in extirpations is also evaluated. Consideration is given to the significance of these specialised ancient forest inhabitants in Ireland in the absence of an early Holocene land-bridge which suggests that colonisation was aided by other mechanisms, such as human activities and wood-rafting. Finally, the paper discusses the Continental origins of the British and Irish fauna and its hosts and the role played by European glacial refugia.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Holocene palaeoecological sequence from Villaverde, south-central Spain, is presented. The pollen stratigraphy is used to infer past vegetation changes within a catchment area that represents the boundary between semi-arid, plateau and mountain vegetation. From c. 9700–7530 cal. yr BP, Pinus is dominant, probably as a result of a combination of a relatively dry climate and natural fire disturbance. From c. 7530–5900 cal. yr BP, moderate invasion by Quercus appears to be a migrational response following increased moisture and temperature, but in part shaped by competitive adjustments. From c. 5900–5000 cal. yr BP, the pine forests are replaced by deciduous-Quercus forests with an important contribution from Corylus, Betula, Fraxinus and Alnus. Mediterranean-type forests spread from c. 5000 to 1920 cal. yr BP coincident with expansions of Artemisia, Juniperus and other xerophytes. From c. 1920–1160 cal. yr BP, Pinus becomes dominant after a disturbance- mediated invasion of the oak forests. Human impact upon the regional landscape was negligible during the Neolithic, and limited in the Bronze and Iron Ages. Local deforestation and the expansion of agro-pastoral activities occur after c. 1600 cal. yr BP.