270 resultados para Radio Lines : Galaxies
Resumo:
We report the detection of Voigt spectral line profiles of radio recombination lines (RRLs) toward Sagittarius B2(N) with the 100 m Green Bank Telescope (GBT). At radio wavelengths, astronomical spectra are highly populated with RRLs, which serve as ideal probes of the physical conditions in molecular cloud complexes. An analysis of the Hn alpha lines presented herein shows that RRLs of higher principal quantum number (n > 90) are generally divergent from their expected Gaussian profiles and, moreover, are well described by their respective Voigt profiles. This is in agreement with the theory that spectral lines experience pressure broadening as a result of electron collisions at lower radio frequencies. Given the inherent technical difficulties regarding the detection and profiling of true RRL wing spans and shapes, it is crucial that the observing instrumentation produce flat baselines as well as high-sensitivity, high-resolution data. The GBT has demonstrated its capabilities regarding all of these aspects, and we believe that future observations of RRL emission via the GBT will be crucial toward advancing our knowledge of the larger-scale extended structures of ionized gas in the interstellar medium (ISM).
Resumo:
We investigate the acceleration of particles by Alfven waves via the second-order Fermi process in the lobes of giant radio galaxies. Such sites are candidates for the accelerators of ultra-high-energy cosmic rays (UHECR). We focus on the nearby Fanaroff-Riley type I radio galaxy Centaurus A. This is motivated by the coincidence of its position with the arrival direction of several of the highest energy Auger events. The conditions necessary for consistency with the acceleration time-scales predicted by quasi-linear theory are reviewed. Test particle calculations are performed in fields which guarantee electric fields with no component parallel to the local magnetic field. The results of quasi-linear theory are, to an order of magnitude, found to be accurate at low turbulence levels for non-relativistic Alfven waves and at both low and high turbulence levels in the mildly relativistic case. We conclude that for pure stochastic acceleration via Alfven waves to be plausible as the generator of UHECR in Cen A, the baryon number density would need to be several orders of magnitude below currently held upper limits.
Resumo:
Ten detections and five tentative detections of hydrogen isocyanide (HNC) J=1-0 emission are reported from a survey including sixteen galaxies. Full maps are presented for the nuclear regions of NGC 253 and IC 342, partial maps for Maffei 2, M 82, and M 83. Toward IC 342, the HNC and HCO+ distributions differ from those observed in 12CO, 13CO, HCN, CS, and NH3. This is likely a consequence of the density structure. Relative HNC abundances are with 10(-10)-10(-9) much smaller than those measured in nearby dark clouds and appear to be slightly smaller than those in regions of massive star formation of the Galactic disk. This is consistent with the presence of dense warm gas or a frequent occurrence of shocks in the nuclear regions of the galaxies observed. As in prominent Galactic star forming regions, 3 mm HNC line emission tends to be weaker than the corresponding emission from HCN and HCO+. Toward Arp 220, however, the 3 mm HNC/HCN line intensity ratio is > 1. HNC/HCO+, HNC/CO, and HNC to 20 cm radio continuum luminosity ratios are also particularly large. A possible interpretation is the presence of cool quiescent gas outside the central region which contains the starburst. In the other ultraluminous galaxy observed, NGC 6240, X(HNC) 10 smaller than in Arp 220, demonstrating that the molecular composition in ultraluminous galaxies is far from being uniform.
Resumo:
Optical emission spectra from a low-pressure Ar plasma were studied with high spatial resolution. It has been shown that the intensity ratios of Ar lines excited through metastable levels to those excited directly from the ground state are sensitive to the shape of electron energy distribution function. From these measurements, important information on the spatial variation of plasma parameters can be obtained. (C) 1999 American Institute of Physics. [S0003-6951(99)01629-0].
Resumo:
The use of radiation-inducible promoters to drive transgene expression offers the possibility of temporal and spatial regulation of gene activation. This study assessed the potential of one such promoter element, p21(WAF1/CIP1) (WAF1), to drive expression of the noradrenaline transporter (NAT) gene, which conveys sensitivity to radioiodinated meta-iodobenzylguanidine (MIBG). An expression vector containing NAT under the control of the radiation-inducible WAF1 promoter (pWAF/NAT) was produced. The non-NAT expressing cell lines UVW (glioma) and HCT116 (colorectal cancer) were transfected with this construct to assess radiation-controlled WAF1 activation of the NAT gene. Transfection of UVW and HCT cells with pWAF/NAT conferred upon them the ability to accumulate [(131)I]MIBG, which led to increased sensitivity to the radiopharmaceutical. Pretreatment of transfected cells with ? radiation or the radiopharmaceuticals [(123)I]MIBG or [(131)I]MIBG induced dose- and time-dependent increases in subsequent [(131)I]MIBG uptake and led to enhanced efficacy of [(131)I]MIBG-mediated cell kill. Gene therapy using WAF1-driven expression of NAT has the potential to expand the use of this therapeutic modality to tumors that lack a radio-targetable feature.
Resumo:
We report on Suzaku observations of selected regions within the southern giant lobe of the radio galaxy Centaurus A. In our analysis we focus on distinct X-ray features detected with the X-ray Imaging Spectrometer within the range 0.5-10 keV, some of which are likely associated with fine structure of the lobe revealed by recent high-quality radio intensity and polarization maps. With the available photon statistics, we find that the spectral properties of the detected X-ray features are equally consistent with thermal emission from hot gas with temperatures kT > 1 keV, or with a power-law radiation continuum characterized by photon indices Gamma similar to 2.0 +/- 0.5. However, the plasma parameters implied by these different models favor a synchrotron origin for the analyzed X-ray spots, indicating that a very efficient acceleration of electrons up to greater than or similar to 10 TeV energies is taking place within the giant structure of Centaurus A, albeit only in isolated and compact regions associated with extended and highly polarized radio filaments. We also present a detailed analysis of the diffuse X-ray emission filling the whole field of view of the instrument, resulting in a tentative detection of a soft excess component best fitted by a thermal model with a temperature of kT similar to 0.5 keV. The exact origin of the observed excess remains uncertain, although energetic considerations point to thermal gas filling the bulk of the volume of the lobe and mixed with the non-thermal plasma, rather than to the alternative scenario involving a condensation of the hot intergalactic medium around the edges of the expanding radio structure. If correct, this would be the first detection of the thermal content of the extended lobes of a radio galaxy in X-rays. The corresponding number density of the thermal gas in such a case is n(g) similar to 10(-4) cm(-3), while its pressure appears to be in almost exact equipartition with the volume-averaged non-thermal pressure provided by the radio-emitting electrons and the lobes' magnetic field. A prominent large-scale fluctuation of the Galactic foreground emission, resulting in excess foreground X-ray emission aligned with the lobe, cannot be ruled out. Although tentative, our findings potentially imply that the structure of the extended lobes in active galaxies is likely to be highly inhomogeneous and non-uniform, with magnetic reconnection and turbulent acceleration processes continuously converting magnetic energy to internal energy of the plasma particles, leading to possibly significant spatial and temporal variations in the plasma beta parameter around the volume-averaged equilibrium condition beta similar to 1.
Resumo:
We present optical and near-infrared (NIR) photometry and NIR spectroscopy of SN 2004am, the only optically detected supernova (SN) in M82. These demonstrate that SN 2004am was a highly reddened Type II-P SN similar to the low-luminosity Type II-P events such as SNe 1997D and 2005cs. We show that SN 2004am was located coincident with the obscured super star cluster M82-L, and from the cluster age infer a progenitor mass of 12{^{+ 7}_{- 3}} M⊙. In addition to this, we present a high spatial resolution Gemini-North Telescope K-band adaptive optics image of the site of SN 2008iz and a second transient of uncertain nature, both detected so far only at radio wavelengths. Using image subtraction techniques together with archival data from the Hubble Space Telescope, we are able to recover a NIR transient source coincident with both objects. We find the likely extinction towards SN 2008iz to be not more than AV ˜ 10. The nature of the second transient remains elusive and we regard an extremely bright microquasar in M82 as the most plausible scenario.
Resumo:
We present the Pan-STARRS1 discovery and light curves, and follow-up MMT and Gemini spectroscopy of an ultraluminous supernova (ULSN; dubbed PS1-11bam) at a redshift of z = 1.566 with a peak brightness of M UV ≈ -22.3 mag. PS1-11bam is one of the highest redshift spectroscopically confirmed SNe known to date. The spectrum exhibits broad absorption features typical of previous ULSNe (e.g., C II, Si III), and strong and narrow Mg II and Fe II absorption lines from the interstellar medium (ISM) of the host galaxy, confirmed by an [O II]λ3727 emission line at the same redshift. The equivalent widths of the Fe II λ2600 and Mg II λ2803 lines are in the top quartile of the quasar intervening absorption system distribution, but are weaker than those of gamma-ray burst intrinsic absorbers (i.e., GRB host galaxies). We also detect the host galaxy in pre-explosion Pan-STARRS1 data and find that its UV spectral energy distribution is best fit with a young stellar population age of τ* ≈ 15-45 Myr and a stellar mass of M * ≈ (1.1-2.6) × 109 M ⊙ (for Z = 0.05-1 Z ⊙). The star formation rate inferred from the UV continuum and [O II]λ3727 emission line is ≈10 M ⊙ yr-1, higher than in previous ULSN hosts. PS1-11bam provides the first direct demonstration that ULSNe can serve as probes of the ISM in distant galaxies. The depth and red sensitivity of PS1 are uniquely suited to finding such events at cosmologically interesting redshifts (z ~ 1-2); the future combination of LSST and 30 m class telescopes promises to extend this technique to z ~ 4.
Resumo:
The relative sensitivity of neoplastic cells to DNA damaging agents is a key factor in cancer therapy. In this paper, we show that pretreatment of Burkitt's lymphoma cell lines expressing the c-met protooncogene with hepatocyte growth factor (HGF) protects them from death induced by DNA damaging agents commonly used in tumour therapy. This protection was observed in assays based on morphological assessment of apoptotic cells and DNA fragmentation assays. The protection was dose- and time-dependent — maximal protection requiring pre-incubation with 100 ng/ml HGF for 48 h. Western blotting analysis and flow cytometric studies revealed that HGF inhibited doxorubicin- and etoposide-induced decreases in the levels of the anti-apoptotic proteins Bcl-XL, and to a lesser extent Bcl-2, without inducing changes in the pro-apoptotic Bax protein. Overall, these studies suggest that the accumulation of HGF within the microenvironment of neoplastic cells may contribute to the development of a chemoresistant phenotype.
Si X emission lines in spectra obtained with the Solar EUV Rocket Telescope and Spectrograph (SERTS)
Resumo:
New R-matrix calculations of electron impact excitation rates in Ca XV are used to derive theoretical electron density diagnostic emission line intensity ratios involving 2s(2)2p(2)- 2s2p(3) transitions, specifically R-1 = I(208.70 Angstrom)/I(200.98 Angstrom), R-2 = I(181.91 Angstrom)/I(200.98 Angstrom), and R-3 = I(215.38 Angstrom)/I(200.98 Angstrom), for a range of electron temperatures (T-e = 10(6.4)-10(6.8) K) and densities (Ne = 10(9)-10(13) cm(-3)) appropriate to solar coronal plasmas. Electron densities deduced from the observed values of R-1, R-2, and R-3 for several solar flares, measured from spectra obtained with the Naval Research Laboratory's S082A spectrograph on board Skylab, are found to be consistent. In addition, the derived electron densities are in excellent agreement with those determined from line ratios in Ca XVI, which is formed at a similar electron temperature to Ca XV. These results provide some experimental verification for the accuracy of the line ratio calculations, and hence the atomic data on which they are based. A set of eight theoretical Ca XV line ratios involving 2s(2)2p(2)-2s2p(3) transitions in the wavelength range similar to140-216 Angstrom are also found to be in good agreement with those measured from spectra of the TEXT tokamak plasma, for which the electron temperature and density have been independently determined. This provides additional support for the accuracy of the theoretical line ratios and atomic data.