55 resultados para Radar in navigation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of radars in detecting low flying, small targets is being explored for several decades now. However radar with counter-stealth abilities namely the passive, multistatic, low frequency radars are in the focus recently. Passive radar that uses Digital Video Broadcast Terrestrial (DVB-T) signals as illuminator of opportunity is a major contender in this area. A DVB-T based passive radar requires the development of an antenna array that performs satisfactorily over the entire DVB-T band. At Fraunhofer FHR, there is currently a need for an array antenna to be designed for operation over the 450-900 MHz range with wideband beamforming and null steering capabilities. This would add to the ability of the passive radar in detecting covert targets and would improve the performance of the system. The array should require no mechanical adjustments to inter-element spacing to correspond to the DVB-T carrier frequency used for any particular measurement. Such an array would have an increased flexibility of operation in different environment or locations.

The design of such an array antenna and the applied techniques for wideband beamforming and null steering are presented in the thesis. The interaction between the inter-element spacing, the grating lobes and the mutual couplings had to be carefully studied and an optimal solution was to be reached at that meets all the specifications of the antenna array for wideband applications. Directional beams, nulls along interference directions, low sidelobe levels, polarization aspects and operation along a wide bandwidth of 450-900 MHz were some of the key considerations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A 94 GHz waveguide Rotman lens is described which can be used to implement an amplitude comparison monopulse RADAR. In transmit mode, adjacent dual beam ports are excited with equal amplitude and phase to form a sum radiation pattern, and in receive mode, the outputs of the beam port pairs are combined using magic tees to provide a sum and a difference signal which can be used to calculate an angular error estimate for target acquisition and tracking. This approach provides an amplitude comparison monopulse system which can be scanned in azimuth and which has a low component count, with no requirement for phase shift circuitry in the array feed lines, making it suitable for mm-wave frequencies. A 12 input (beam ports), 12 output (array ports) lens is designed using CST Microwave Studio, and the predicted results are presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A search for a submerged jet ski and the lost limb of its driver involved in a collision with a speedboat was made in a shallow lake in Northern Ireland. The location of both was crucial to establishing events at the time of the accident. Local intelligence suggested both objects were likely to be partially-buried by lacustrine silt. To avoid sediment churning, this required non-invasive, completely non-destructive assessment and mapping of the scene. A MALA RAMAC ground-penetrating radar system (GPR) mounted on floats for surveying from walkways and jetties or placed in a small rubber dinghy for offshore profiling was used. A grid was established and each line surveyed with 100, 200 and 400MHz antennae. In waters over 6m deep GPR data showed the form of the lake floor but excessive ringing occurred in the data. In waters less than 6m deep ringing diminished on both 100 and 200MHz data, the latter displaying the best trade-off between depth penetration and horizontal object resolution. 400MHz data failed to be of use in waters over 2m deep and at these depths showed only limited improvement of image quality compared to 200MHz data. Surface objects such as a wooden walkway caused interference on 200 and 400MHz data when antennae were oriented both normal and parallel to survey direction; this may be a function of the low attenuation of radar waves in freshwater, allowing excellent lateral and vertical radar wave penetration. On 200MHz data the damaged jet-ski was clearly imaged in a location that contradicted the speedboat driver's account of the accident.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nowadays few people consider finding their way in unfamiliar areas a problem as a GPS (Global Positioning System) combined with some simple map software can easily tell you how to get from A to B. Although this opportunity has only become available during the last decade, recent experiments show that long-distance migrating animals had already solved this problem. Even after displacement over thousands of kilometres to previously unknown areas, experienced but not first time migrant birds quickly adjust their course toward their destination, proving the existence of an experience-based GPS in these birds. Determining latitude is a relatively simple task, even for humans, whereas longitude poses much larger problems. Birds and other animals however have found a way to achieve this, although we do not yet know how. Possible ways of determining longitude includes using celestial cues in combination with an internal clock, geomagnetic cues such as magnetic intensity or perhaps even olfactory cues. Presently, there is not enough evidence to rule out any of these, and years of studying birds in a laboratory setting have yielded partly contradictory results. We suggest that a concerted effort, where the study of animals in a natural setting goes hand-in-hand with lab-based study, may be necessary to fully understand the mechanism underlying the long-distance navigation system of birds. As such, researchers must remain receptive to alternative interpretations and bear in mind that animal navigation may not necessarily be similar to the human system, and that we know from many years of investigation of long-distance navigation in birds that at least some birds do have a GPS-but we are uncertain how it works.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bats have been extensively studied with regard to their ability to orient, navigate and hunt prey by means of echolocation, but almost nothing is known about how they orient and navigate in situations such as migration and homing outside the range of their echolocation system. As volant animals, bats face many of the same problems and challenges as birds. Migrating bats must relocate summer and winter home ranges over distances as far as 2,000 km. Foraging bats must be able to relocate their home roost if they range beyond a familiar area, and indeed circumstantial evidence suggests that these animals can home from more than 600 km. However, an extensive research program on homing and navigation in bats halted in the early 1970s. The field of bird navigation has advanced greatly since that time and many of the mechanisms that birds are known to use for navigation were not known or widely accepted at this time. In this paper I discuss what is known about orientation and navigation in bats and use bird navigation as a model for future research in bat navigation. Technology is advancing such that previous difficulties in studying orientation in bats in the field can be overcome and so that the mechanisms of navigation in this highly mobile animal can finally be elucidated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Although the use of olfactory cues in pigeon navigation is well established, the generality of olfactory navigation remains uncertain because of apparent variability in results gained by different researchers in different regions. We report the results of the first experiments investigating the effect of anosmia on homing pigeons reared in a previously uninvestigated region, southern England. In series 1, experienced birds showed little effect of anosmia induced with zinc sulphate at unfamiliar sites 30 km and 39 km from the loft, but treated birds were significantly poorer than controls at homing from an unfamiliar site 66 km distant (and in pooled results). In series 2, naive (untrained) birds, both control and zinc-sulphate-treated, showed poor homing abilities and initial orientation from sites 25 km, 36 km and 39 km from the loft. Nevertheless, in pooled results, controls showed significantly better homeward orientation than anosmic birds and were significantly more likely to home on the day of release. The most likely explanation for our results is that pigeons are able to use olfactory navigation in southern England, but that for some reason the olfactory map is relatively weak.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Birds have remained the dominant model for studying the mechanisms of animal navigation for decades, with much of what has been discovered coming from laboratory studies or model systems. The miniaturisation of tracking technology in recent years now promises opportunities for studying navigation during migration itself (migratory navigation) on an unprecedented scale. Even if migration tracking studies are principally being designed for other purposes, we argue that attention to salient environmental variables during the design or analysis of a study may enable a host of navigational questions to be addressed, greatly enriching the field. We explore candidate variables in the form of a series of contrasts (e. g. land vs ocean or night vs day migration), which may vary naturally between migratory species, populations or even within the life span of a migrating individual. We discuss how these contrasts might help address questions of sensory mechanisms, spatiotemporal representational strategies and adaptive variation in navigational ability. We suggest that this comparative approach may help enrich our knowledge about the natural history of migratory navigation in birds.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ontogeny of continent-wide navigation mechanisms of the individual organism, despite being crucial for the understanding of animal movement and migration, is still poorly understood. Several previous studies, mainly conducted on passerines, indicate that inexperienced, juvenile birds may not generally correct for displacement during fall migration. Waterbirds such as the mallard (Anas platyrhynchos, Linnaeus 1758) are more flexible in their migration behavior than most migratory songbirds, but previous experiments with waterbirds have not yet allowed clear conclusions about their navigation abilities. Here we tested whether immature mallard ducks correct for latitudinal displacement during fall migration within Europe. During two consecutive fall migration periods, we caught immature females on a stopover site in southeast Sweden, and translocated a group of them ca. 1,000 km to southern Germany. We followed the movements of the ducks via satellite GPS-tracking and observed their migration decisions during the fall and consecutive spring migration. The control animals released in Ottenby behaved as expected from banding recoveries: they continued migration during the winter and in spring returned to the population's breeding grounds in the Baltics and Northwest Russia. Contrary to the control animals, the translocated mallards did not continue migration and stayed at Lake Constance. In spring, three types of movement tactics could be observed: 61.5% of the ducks (16 of 26) stayed around Lake Constance, 27% (7 of 26) migrated in a northerly direction towards Sweden and 11.5% of the individuals (3 of 26) headed east for ca. 1,000 km and then north. We suggest that young female mallards flexibly adjust their migration tactics and develop a navigational map that allows them to return to their natal breeding area.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents an approach to improve the detection of an artificial target with low radar cross-section in presence of clutter. The target proposed in the paper modulates the phase response of the circularly polarized incident signal by means of rotation. The same physical phenomenon can be used to steer the modulated response in a non-specular direction. The bi-static measurements of the response of the target have demonstrated good agreement with theoretical prediction as well as with full-wave simulation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Birds are capable of true navigation, the ability to return to a known goal from a place they have never visited before. This is demonstrated most spectacularly during the vast migratory journeys made by these animals year after year, often between continents and occasionally global in nature. However, it remains one of the great unanswered questions in science, despite more than 50 years of research in this field. Nevertheless, the study of true navigation in birds has made significant advances in the previous 20 years, in part thanks to the integration of many disciplines outside its root in behavioural biology, to address questions of neurobiology, molecular aspects, and the physics of sensory systems and environmental cues involved in bird navigation, often involving quantum physics. However, true navigation remains a controversial field, with many conflicting and confusing results making interpretation difficult, particularly for those outside or new to the field. Unlike many general texts on migration, which avoid discussion of these issues, this review will present these conflicting findings and assess the state of the field of true navigation during bird migration.