24 resultados para RUMEN FERMENTATION
Resumo:
The presence of savory peptides in moromi has been investigated. Moromi was prepared by fermenting yellow soybean using Aspergillus oryzae as the starter at the first step (mold fermentation) and 20% brine solution at the next step (brine fermentation). The moromi was then ultrafiltered stepwise using membranes with MW cut-offs of 10,000, 3,000, and 500 Da, respectively. The fraction with MW <500 Da was chromatographed using Sephadex G-25 SF to yield four fractions, 1-4. Analysis of soluble peptides, NaCl content, alpha-amino nitrogen, amino acid composition, peptide profile using CE coupled with DAD, taste profile and free glutamic acid content, were performed for each fraction. Fraction 2 contained a relatively high total glutamic acid content, but a relatively low free glutamic acid content and had the highest umami taste. This fraction also had more peptides containing non-aromatic amino acids than the other fractions. The peptides present in fraction 2 may play a role, at least in part, in its intense umami taste.
Resumo:
The Maillard reaction causes changes to protein structure and occurs in foods mainly during thermal treatment. Melanoidins, the final products of the Maillard reaction, may enter the gastrointestinal tract, which is populated by different species of bacteria. In this study, melanoidins were prepared from gluten and glucose. Their effect on the growth of faecal bacteria was determined in culture with genotype and phenotype probes to identify the different species involved. Analysis of peptic and tryptic digests showed that low molecular mass products are formed from the degradation of melanoidins. Results showed a change in the growth of bacteria. This in vitro study demonstrated that melanoidins, prepared from gluten and glucose, affect the growth of the gut microflora.
Resumo:
The human colonic microbiota imparts metabolic versatility on the colon, interacts at many levels in healthy intestinal and systemic metabolism, and plays protective roles in chronic disease and acute infection. Colonic bacterial metabolism is largely dependant on dietary residues from the upper gut. Carbohydrates, resistant to digestion, drive colonic bacterial fermentation and the resulting end products are considered beneficial. Many colonic species ferment proteins but the end products are not always beneficial and include toxic compounds, such as amines and phenols. Most components of a typical Western diet are heat processed. The Maillard reaction, involving food protein and sugar, is a complex network of reactions occurring during thermal processing. The resultant modified protein resists digestion in the small intestine but is available for colonic bacterial fermentation. Little is known about the fate of the modified protein but some Maillard reaction products (MRP) are biologically active by, e.g. altering bacterial population levels within the colon or, upon absorption, interacting with human disease mechanisms by induction of inflammatory responses. This review presents current understanding of the interactions between MRP and intestinal bacteria. Recent scientific advances offering the possibility of elucidating the consequences of microbe-MRP interactions within the gut are discussed.
Resumo:
Samples were taken at each stage of brewing (malt, milling, mashing, wort separation, hop addition, boiling, whirlpool, dilution, fermentation, warm rest, chill-lagering, beer filtration, carbonation and bottling, pasteurization, and storage). The level of antioxidant activity of unfractionated, low-molecular-mass (LMM) and high-molecular-mass (HMM) fractions was measured by the 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfortic acid) radical cation (ABTS(.+)) and ferric-reducing antioxidant power (FRAP) procedures. Polyphenol levels were assessed by HPLC. The LMM fraction ( 0.001) in catechin and ferulic acid levels. Increases in antioxidant activity levels were observed after mashing, boiling, fermentation, chill-lagering, and pasteurization, in line with previous studies on lager. Additionally, increases in the level of antioxidant activity occurred after wort separation and carbonation and bottling and were accompanied by increases in levels of most monitored polyphenols. Data from the ABTS(.-) and FRAP assays indicated that the compounds contributing to the levels of antioxidant activity responded differently in the two procedures. Levels of ferulic, vanillic, and chlorogenic acids and catechin accounted for 45-61% of the variation in antioxidant activity levels.
Resumo:
Thua nao, a traditional, proteolytic, fermented soybean condiment of northern Thailand, was prepared from cooked whole soybeans by natural flora fermentation. The microbial flora during the fermentation was dominated by Bacillus species. The formation of volatile compounds during the fermentation was studied. In addition, the volatile compounds of two samples of commercial dried thua nao and two samples of commercial Japanese natto were analysed. Fermentation led to a large increase in the concentration of total volatile compounds, from 35 mug kg(-1) wet weight in cooked soybeans to 3500 mug kg(-1) wet weight in 72h fermented material. The major volatile compounds in fermented beans were 3-hydroxybutanone (acetoin), 2-methlybutanoic acid, pyrazines, dimethyl disulphide and 2-pentylfuran. Sun drying of 72 h fermented material resulted in the loss of 65% of total volatiles, including important aroma compounds. The commercial dried thua nao samples had low concentrations of total volatile compounds (380 mug kg(-1) wet weight). It is suggested that improved drying/preservation methods are needed to retain aroma compounds in the traditional products. The natto samples were devoid of aldehydes, aliphatic acids and esters, and sulphur compounds, whereas the thua nao samples contained a diversity of these compounds. Previous investigators have reported these compounds in natto and it is not possible to suggest the existence of systematic differences between the volatile compounds in traditional thua nao prepared with an undefined, mixed microbial flora and those in natto fermented with Bacillus subtilis. (C) 2001 Society of Chemical Industry.
Resumo:
During alcoholic fermentation, the products build up and can, ultimately, kill the organism due to their effects on the cell's macromolecular systems. The effects of alcohols on the steady-state kinetic parameters of the model enzyme ß-galactosidase were studied. At modest concentrations (0 to 2 M), there was little effect of methanol, ethanol, propanol and butanol on the kinetic constants. However, above these concentrations, each alcohol caused the maximal rate, V (max), to fall and the Michaelis constant, K (m), to rise. Except in the case of methanol, the chaotropicity of the solute, rather than its precise chemical structure, determined and can, therefore, be used to predict inhibitory activity. Compounds which act as compatible solutes (e.g. glycerol and other polyols) generally reduced enzyme activity in the absence of alcohols at the concentration tested (191 mM). In the case of the ethanol- or propanol-inhibited ß-galactosidase, the addition of compatible solutes was unable to restore the enzyme's kinetic parameters to their uninhibited levels; addition of chaotropic solutes such as urea tended to enhance the effects of these alcohols. It is possible that the compatible solutes caused excessive rigidification of the enzyme's structure, whereas the alcohols disrupt the tertiary and quaternary structure of the protein. From the point of view of protecting enzyme activity, it may be unwise to add compatible solutes in the early stages of industrial fermentations; however, there may be benefits as the alcohol concentration increases.
Resumo:
Lovastatin biosynthesis depends on the relative concentrations of dissolved oxygen and the carbon and nitrogen resources. An elucidation of the underlying relationship would facilitate the derivation of a controller for the improvement of lovastatin yield in bioprocesses. To achieve this goal, batch submerged cultivation experiments of lovastatin production by Aspergillus flavipus BICC 5174, using both lactose and glucose as carbon sources, were performed in a 7 liter bioreactor and the data used to determine how the relative concentrations of lactose, glucose, glutamine and oxygen affected lovastatin yield. A model was developed based on these results and its prediction was validated using an independent set of batch data obtained from a 15-liter bioreactor using five statistical measures, including the Willmott index of agreement. A nonlinear controller was designed considering that dissolved oxygen and lactose concentrations could be measured online, and using the lactose feed rate and airflow rate as process inputs. Simulation experiments were performed to demonstrate that a practical implementation of the nonlinear controller would result in satisfactory outcomes. This is the first model that correlates lovastatin biosynthesis to carbon-nitrogen proportion and possesses a structure suitable for implementing a strategy for controlling lovastatin production.
Resumo:
Malignant tumors metabolize glucose to lactate even in the presence of oxygen (aerobic glycolysis). The metabolic switch from oxidative glycolysis to non-oxidative fermentation of glucose and proteins performed by the tumor cells seems to be associated with TKTL1 and pAkt overexpression. Therefore the aim of the present study was to investigate the expression of TKTL1 and pAkt in human specimens of endometrial cancer as compared to benign endometrium. Additionally, expression of the glucose transporter GLUT1 was also investigated as aerobic glycolysis is associated with an increased need for glucose.
Resumo:
Due to its low digestibility in the small intestine, a major fraction of the polyol isomalt reaches the colon. However, little is known about effects on the intestinal microflora. During two 4-week periods in a double-blind, placebo-controlled, cross-over design, nineteen healthy volunteers consumed a controlled basal diet enriched with either 30 g isomalt or 30 g sucrose daily. Stools were collected at the end of each test phase and various microbiological and luminal markers were analysed. Fermentation characteristics of isomalt were also investigated in vitro. Microbiological analyses of faecal samples indicated a shift of the gut flora towards an increase of bifidobacteria following consumption of the isomalt diet compared with the sucrose diet (P