3 resultados para RUM
Resumo:
This paper introduces the discrete choice model-paradigm of Random Regret Minimization (RRM) to the field of environmental and resource economics. The RRM-approach has been very recently developed in the context of travel demand modelling and presents a tractable, regret-based alternative to the dominant choice-modelling paradigm based on Random Utility Maximization-theory (RUM-theory). We highlight how RRM-based models provide closed form, logit-type formulations for choice probabilities that allow for capturing semi-compensatory behaviour and choice set-composition effects while being equally parsimonious as their utilitarian counterparts. Using data from a Stated Choice-experiment aimed at identifying valuations of characteristics of nature parks, we compare RRM-based models and RUM-based models in terms of parameter estimates, goodness of fit, elasticities and consequential policy implications.
Resumo:
This paper introduces the discrete choice model-paradigm of Random Regret Minimisation (RRM) to the field of health economics. The RRM is a regret-based model that explores a driver of choice different from the traditional utility-based Random Utility Maximisation (RUM). The RRM approach is based on the idea that, when choosing, individuals aim to minimise their regret–regret being defined as what one experiences when a non-chosen alternative in a choice set performs better than a chosen one in relation to one or more attributes. Analysing data from a discrete choice experiment on diet, physical activity and risk of a fatal heart attack in the next ten years administered to a sample of the Northern Ireland population, we find that the combined use of RUM and RRM models offer additional information, providing useful behavioural insights for better informed policy appraisal.
Resumo:
This study is the first to compare random regret minimisation (RRM) and random utility maximisation (RUM) in freight transport application. This paper aims to compare RRM and RUM in a freight transport scenario involving negative shock in the reference alternative. Based on data from two stated choice experiments conducted among Swiss logistics managers, this study contributes to related literature by exploring for the first time the use of mixed logit models in the most recent version of the RRM approach. We further investigate two paradigm choices by computing elasticities and forecasting choice probability. We find that regret is important in describing the managers’ choices. Regret increases in the shock scenario, supporting the idea that a shift in reference point can cause a shift towards regret minimisation. Differences in elasticities and forecast probability are identified and discussed appropriately.