89 resultados para RU(BPY)(3)(3 )-BASED CHEMILUMINESCENCE DETECTION
Resumo:
The quenching of the electronically-excited, lumophoric state of [Ru(bpy)(3)(2+)(Ph4B-)(2)] by oxygen is studied in a wide variety of neat plasticizers. The Stern-Volmer constant, K-SV, is found to be inversely dependent upon the viscosity of the quenching medium, although the natural lifetime of the electronically excited state of [RU(bPY)(3)(2+)(Ph4B-)(2)] is largely independent of medium. The least viscous of the plasticizers tested, triethyl phosphate, did not, however, produce highly sensitive optical oxygen sensors when used to plasticize [RU(bPY)(3)(2+)(Ph4B-)(2)]-containing cellulose acetate butyrate (CAB) and poly(methyl methacrylate) (PMMA) films, Instead, the compatibility of the polymer-plasticizer combination, as measured by the difference in the values of the solubility parameter of the two, appears to be a major factor in determining the overall oxygen sensitivity of the thin plastic films. For highly compatible polymer-plasticizer combinations, the plasticizer with the lowest viscosity produces films of the highest oxygen sensitivity. This situation arises because in the film the quenching process is partly diffusion-controlled and, as a result, the quenching rate constant is inversely proportional to the effective viscosity of the reaction medium.
Resumo:
The ruthenium(II) diimine complexes, such as ruthenium(II) tris( bipyridyl), Ru(bpy)(3)(2+), possess highly luminescent excited states that are not only readily quenched by oxygen but also by an increase in temperature. The former effect can be rendered insignificant by encapsulating the complex in an oxygen impermeable polymer, although encapsulation often leads also to a loss of temperature sensitivity. The luminescence properties of Ru(bpy)(3)(2+) encapsulated in PVA were studied as a function of oxygen concentration and temperature and found to be independent of the former, but still very sensitive towards the latter. The results were fitted to an established Arrhenius-type equation, based on thermal quenching of the emitting state by a slightly higher (Delta E = 3100 cm(-1)) (3)d-d state that deactivates very rapidly (10(-13) s) via a non-radiative process.
Resumo:
The preparation and characterisation are described of a robust, reversible, hydrogen peroxide optical sensor, based on the fluorescent quenching of the dye ion-pair [Ru(bpy)(3)(2+)(Ph4B-)(2)], by O-2 produced by the catalytic breakdown of H2O2, utilizing the inorganic catalyst RuO2 center dot xH(2)O. The main feature of this system is the one-pot formulation of a coating ink that, when dried, forms an active single-layer fluorescence-based H2O2 sensor, demonstrably capable of detecting H2O2 over the range of 0.01 to 1 M, with a relative standard deviation of ca. 4% and a calculated lower limit of detection of 0.1 mM. These sensors are sterilisable, using dry-heat, and stable when stored over 40 days, without exhibiting any loss in sensitivity or response characteristics.
Resumo:
Surface plasmon resonance (SPR)-based biosensor is a popular platform for real-time monitoring and sensitive detection for a myriad of targets. However, only a few studies have reported the use of bacteriophages as specific binders for SPR-based detection. This study aimed to demonstrate how filamentous M13 bacteriophages expressing 12-mer peptides can be employed in an SPR-based assay, using a Salmonella-specific bacteriophage as a model binder to detect the foodborne bacterium Salmonella. Several important factors (immobilization buffers and methods, and interaction buffers) for a successful bacteriophage-based SPR assay were optimized. As a result, a Salmonella-specific bacteriophage-based SPR assay was achieved, with very low cross reactivity with other non-target foodborne pathogens and detection limits of 8.0 × 107 and 1.3 × 107 CFU/mL for one-time and five-time immobilized sensors, respectively. This proof-of-concept study demonstrates the feasibility of using M13 bacteriophages expressing target-specific peptides as a binder in a rapid and label-free SPR assay for pathogen detection.
Resumo:
While virtualisation can provide many benefits to a networks infrastructure, securing the virtualised environment is a big challenge. The security of a fully virtualised solution is dependent on the security of each of its underlying components, such as the hypervisor, guest operating systems and storage.
This paper presents a single security service running on the hypervisor that could potentially work to provide security service to all virtual machines running on the system. This paper presents a hypervisor hosted framework which performs specialised security tasks for all underlying virtual machines to protect against any malicious attacks by passively analysing the network traffic of VMs. This framework has been implemented using Xen Server and has been evaluated by detecting a Zeus Server setup and infected clients, distributed over a number of virtual machines. This framework is capable of detecting and identifying all infected VMs with no false positive or false negative detection.
Resumo:
N-gram analysis is an approach that investigates the structure of a program using bytes, characters or text strings. This research uses dynamic analysis to investigate malware detection using a classification approach based on N-gram analysis. The motivation for this research is to find a subset of Ngram features that makes a robust indicator of malware. The experiments within this paper represent programs as N-gram density histograms, gained through dynamic analysis. A Support Vector Machine (SVM) is used as the program classifier to determine the ability of N-grams to correctly determine the presence of malicious software. The preliminary findings show that an N-gram size N=3 and N=4 present the best avenues for further analysis.
Resumo:
A novel method for the preparation of titania sol–gel derived oxygen sensors based on the ruthenium(II) dye, [Ru(bpy)3]2+, is described. A titania sol–gel paste film was cast onto microscope slides, and the dye ion-paired to the deprotonated, hydroxylated groups on the film's surface from an aqueous solution of the dye at pH 11. The resulting sensor film is extremely oxygen sensitive, with a PO2 (S = 1/2) value (i.e. the partial pressure of oxygen required in order to reduce the original, oxygen free, luminescence intensity by 50%) of 0.011 atm. The sensor undergoes 95% response to oxygen in 4 s, and shows 95% recovery of its luminescence in argon within 7 s.
Resumo:
Photooxidative damage was induced predominantly at a single guanine base in a target DNA by irradiation (lambda > 330 nm) in the presence of complementary oligodeoxynucleotide conjugates (ODN-5'-linker-[Ru(phen)3]2+) (phen = 1,10-phenanthroline). The target DNA represents the b2a2 variant of the chimeric bcr-abl gene implicated in the pathogenesis of chronic myeloid leukaemia, and the sequence of the 17mer ODN component of the conjugate (3' G G T A G T T A T T C C T T C T T 5') was complementary to the junction region of the sense strand sequence of this oncogene. Two different conjugates were prepared, both of them by reaction of the appropriate succinimide ester with 5'-hexylamino-derivatised 17mer ODN. In Ru-ODN-1 (7) the linker was -(CH2)6-NHCO-bpyMe (-bpyMe = 4'-[4-methyl-2,2'-bipyridyl]), whereas in Ru-ODN-2 (13) it was -(CH2)6-NHCO-(CH2)3-CONH-phen. Photoexcitation of either of the conjugates when hybridised with the 32P-5'-end-labelled target 34mer 5'T G A C C A T C A A T A A G G A A G A A G21 C C C T T C A G C G G C C 3' (ODN binding site underlined) led to an alkali-labile site predominantly (> 90%) at the G21 base, which is at the junction of double-stranded and single-stranded regions of the hybrid. Greater yields were found with Ru-ODN-1 (7) than with Ru ODN-2 (13). In contrast to this specific cleavage with Ru-ODN-1 (7) or Ru-ODN-2 (13), alkali-labile sites were generated at all guanines when the 34mer was photolysed in the presence of the free sensitiser [Ru(phen)3]2+. Since [Ru(phen)3]2+ was shown to react with 2'-deoxyguanosine to form the diastereomers of a spiroiminodihydantoin derivative (the product from 1O2 reaction), 1O2 might also be an oxidizing species in the case of Ru-ODN-1 (7) and Ru-ODN-2 (13). Therefore to determine the range of reaction, a series of 'variant' targets was prepared, in which G21 was replaced with a cytosine and a guanine substituted for a base further towards the 3'-end (e.g. Variant 3; 5'T G A C C A T C A A T A A G G A A G A A C C G23 C T T C A G C G G32 C C3'). While it was noted that efficient reaction took place at distances apparently remote from the photosensitiser (e.g at G32, but not G23 for Variant 3), this effect could be attributed to hairpinning of the single-stranded region of the target. These results are therefore consistent with the photooxidative damage being induced by a reaction close to the photosensitiser rather than by a diffusible species such as 1O2.
Resumo:
Sphere Decoding (SD) is a highly effective detection technique for Multiple-Input Multiple-Output (MIMO) wireless communications receivers, offering quasi-optimal accuracy with relatively low computational complexity as compared to the ideal ML detector. Despite this, the computational demands of even low-complexity SD variants, such as Fixed Complexity SD (FSD), remains such that implementation on modern software-defined network equipment is a highly challenging process, and indeed real-time solutions for MIMO systems such as 4 4 16-QAM 802.11n are unreported. This paper overcomes this barrier. By exploiting large-scale networks of fine-grained softwareprogrammable processors on Field Programmable Gate Array (FPGA), a series of unique SD implementations are presented, culminating in the only single-chip, real-time quasi-optimal SD for 44 16-QAM 802.11n MIMO. Furthermore, it demonstrates that the high performance software-defined architectures which enable these implementations exhibit cost comparable to dedicated circuit architectures.
Resumo:
Previous research based on theoretical simulations has shown the potential of the wavelet transform to detect damage in a beam by analysing the time-deflection response due to a constant moving load. However, its application to identify damage from the response of a bridge to a vehicle raises a number of questions. Firstly, it may be difficult to record the difference in the deflection signal between a healthy and a slightly damaged structure to the required level of accuracy and high scanning frequencies in the field. Secondly, the bridge is going to have a road profile and it will be loaded by a sprung vehicle and time-varying forces rather than a constant load. Therefore, an algorithm based on a plot of wavelet coefficients versus time to detect damage (a singularity in the plot) appears to be very sensitive to noise. This paper addresses these questions by: (a) using the acceleration signal, instead of the deflection signal, (b) employing a vehicle-bridge finite element interaction model, and (c) developing a novel wavelet-based approach using wavelet energy content at each bridge section which proves to be more sensitive to damage than a wavelet coefficient line plot at a given scale as employed by others.
Resumo:
Unregulated growth promoter use in food-producing animals is an issue of concern both from food safety and animal welfare perspectives. However, the monitoring of such practices is analytically challenging due to the concerted actions of users to evade detection. Techniques based on the monitoring of biological responses to exogenous administrations have been proposed as more sensitive methods to identify treated animals. This study has, for the first time, profiled plasma proteome responses in bovine animals to treatment with nortestosterone decanoate and 17 beta-oestradiol benzoate, followed by dexamethasone administration. Two-dimensional fluorescence differential in-gel electrophoresis analysis revealed a series of hepatic and acute-phase proteins within plasma whose levels were up- or down-regulated within phases of the treatment regime. Surface plasmon resonance (SPR) immuno-assays were developed to quantify responses of identified protein markers during the experimental treatment study with a view to developing methods which can be used as screening tools for growth promoter abuse detection. SPR analysis demonstrated the potential for plasma proteins to be used as indicative measures of growth promoter administrations and concludes that the sensitivity and robustness of any detection approach based on plasma proteome analysis would benefit from examination of a range of proteins representative of diverse biological processes rather being reliant on specific individual markers.
Resumo:
Increased complexity and interconnectivity of Supervisory Control and Data Acquisition (SCADA) systems in Smart Grids potentially means greater susceptibility to malicious attackers. SCADA systems with legacy communication infrastructure have inherent cyber-security vulnerabilities as these systems were originally designed with little consideration of cyber threats. In order to improve cyber-security of SCADA networks, this paper presents a rule-based Intrusion Detection System (IDS) using a Deep Packet Inspection (DPI) method, which includes signature-based and model-based approaches tailored for SCADA systems. The proposed signature-based rules can accurately detect several known suspicious or malicious attacks. In addition, model-based detection is proposed as a complementary method to detect unknown attacks. Finally, proposed intrusion detection approaches for SCADA networks are implemented and verified using a ruled based method.
Resumo:
A practical machine-vision-based system is developed for fast detection of defects occurring on the surface of bottle caps. This system can be used to extract the circular region as the region of interests (ROI) from the surface of a bottle cap, and then use the circular region projection histogram (CRPH) as the matching features. We establish two dictionaries for the template and possible defect, respectively. Due to the requirements of high-speed production as well as detecting quality, a fast algorithm based on a sparse representation is proposed to speed up the searching. In the sparse representation, non-zero elements in the sparse factors indicate the defect's size and position. Experimental results in industrial trials show that the proposed method outperforms the orientation code method (OCM) and is able to produce promising results for detecting defects on the surface of bottle caps.