4 resultados para ROI reusable object and instruction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research in various fields has shown that students benefit from teacher action demonstrations during instruction, establishing the need to better understand the effectiveness of different demonstration types across student proficiency levels. This study centres upon a piano learning and teaching environment in which beginners and intermediate piano students (N=48) learning to perform a specific type of staccato were submitted to three different (group exclusive) teaching conditions: audio-only demonstration of the musical task; observation of the teacher's action demonstration followed by student imitation (blockedobservation); and observation of the teacher's action demonstration whilst alternating imitation of the task with the teacher's performance (interleaved-observation). Learning was measured in relation to students' range of wrist amplitude (RWA) and ratio of sound and inter-sound duration (SIDR) before, during and after training. Observation and imitation of the teacher’s action demonstrations had a beneficial effect on students' staccato knowledge retention at different times after training: students submitted to interleaved-observation presented significantly shorter note duration and larger wrist rotation, and as such, were more proficient at the learned technique in each of the lesson and retention tests than students in the other learning conditions. There were no significant differences in performance or retention for students of different proficiency levels. These findings have relevant implications for instrumental music pedagogy and other contexts where embodied action is an essential aspect of the learning process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Legislation conferring exclusive rights, for a period of 14 years, on persons inventing and designing engravings and similar works. This was first occasion on which British copyright legislation extended to something other than literary works. The commentary describes the background to the Act, in particular the lobbying efforts of a small group of artists and engravers led by William Hogarth, and details similarities and differences which the legislation bore to the Statute of Anne 1710. The commentary suggests that, whereas the Statute of Anne essentially sought to regulate the production of the physical book, with the Engravers' Act the legislature began to articulate a more subtle distinction between the physical object and the subject of copyright protection, which was in this case, the engraved image.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The expression of animal personality is indicated by patterns of consistency in  individual behaviour. Often, the differences exhibited between individuals are consistent across situations. However, between some situations, this can be biased by variable levels of individual plasticity. The interaction between individual plasticity and animal personality can be illustrated by examining situation-sensitive personality traits such as boldness (i.e. risk-taking and exploration tendency). For the weakly electric fish Gnathonemus petersii, light condition is a major factor influencing behaviour. Adapted to navigate in low-light conditions, this species chooses to be more active in dark environments where risk from visual predators is lower. However, G. petersii also exhibit individual differences in their degree of behavioural change from light to dark. The present study, therefore, aims to  examine if an increase of motivation to explore in the safety of the dark, not only affects mean levels of boldness, but also the variation between individuals, as a result of differences  in individual plasticity.  Results: Boldness was consistent between a novel-object and a novel-environment situation in bright light. However, no consistency in boldness was noted between a bright (risky) and a  dark (safe) novel environment. Furthermore, there was a negative association between boldness and the degree of change across novel environments, with shier individuals  exhibiting greater behavioural plasticity.  Conclusions: This study highlights that individual plasticity can vary with personality. In  addition, the effect of light suggests that variation in boldness is situation specific. Finally,  there appears to be a trade-off between personality and individual plasticity with shy but  plastic individuals minimizing costs when perceiving risk and bold but stable individuals  consistently maximizing rewards, which can be maladaptive.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The angle concept is a multifaceted concept having static and dynamic definitions. The static definition of the angle refers to “the space between two rays” or “the intersection of two rays at the same end point” (Mitchelmore & White, 1998), whereas the dynamic definition of the angle concept highlights that the size of angle is the amount of rotation in direction (Fyhn, 2006). Since both definitions represent two diverse situations and have unique limitations (Henderson & Taimina, 2005), students may hold misconceptions about the angle concept. In this regard, the aim of this research was to explore high achievers’ knowledge regarding the definition of the angle concept as well as to investigate their erroneous answers on the angle concept.

104 grade 6 students drawn from four well-established elementary schools of Yozgat, Turkey were participated in this research. All participants were selected via a purposive sampling method and their mathematics grades were 4 or 5 out of 5, and. Data were collected through four questions prepared by considering the learning competencies set out in the grade 6 curriculum in Turkey and the findings of previous studies whose purposes were to identify students’ misconceptions of the angle concept. The findings were analyzed by two researchers, and their inter-rater agreement was calculated as 0.91, or almost perfect. Thereafter, coding discrepancies were resolved, and consensus was established.

The angle concept is a multifaceted concept having static and dynamic definitions.The static definition of the angle refers to “the space between two rays” or“the intersection of two rays at the same end point” (Mitchelmore & White, 1998), whereas the dynamicdefinition of the angle concept highlights that the size of angle is the amountof rotation in direction (Fyhn, 2006). Since both definitionsrepresent two diverse situations and have unique limitations (Henderson & Taimina, 2005), students may holdmisconceptions about the angle concept. In this regard, the aim of thisresearch was to explore high achievers’ knowledge regarding the definition ofthe angle concept as well as to investigate their erroneous answers on theangle concept.

104grade 6 students drawn from four well-established elementary schools of Yozgat,Turkey were participated in this research. All participants were selected via a purposive sampling method and their mathematics grades were 4 or 5 out of 5,and. Data were collected through four questions prepared by considering the learning competencies set out in the grade 6 curriculum in Turkey and the findings of previous studies whose purposes were to identify students’ misconceptions of the angle concept. The findings were analyzed by two researchers, and their inter-rater agreement was calculated as 0.91, or almost perfect. Thereafter, coding discrepancies were resolved, and consensus was established.

In the first question, students were asked to answer a multiple choice questions consisting of two statics definitions and one dynamic definition of the angle concept. Only 38 of 104 students were able to recognize these three definitions. Likewise, Mitchelmore and White (1998) investigated that less than10% of grade 4 students knew the dynamic definition of the angle concept. Additionally,the purpose of the second question was to figure out how well students could recognize 0-degree angle. We found that 49 of 104 students were unable to recognize MXW as an angle. While 6 students indicated that the size of MXW is0, other 6 students revealed that the size of MXW is 360. Therefore, 12 of 104students correctly answered this questions. On the other hand, 28 of 104students recognized the MXW angle as 180-degree angle. This finding demonstrated that these students have difficulties in naming the angles.Moreover, the third question consisted of three concentric circles with center O and two radiuses of the outer circle, and the intersection of the radiuses with these circles were named. Then, students were asked to compare the size of AOB, GOD and EOF angles. Only 36 of 104 students answered correctly by indicating that all three angles are equal, whereas 68 of 104 students incorrectly responded this question by revealing AOB<GOD< EOF. These students erroneously thought the size of the angle is related to either the size of the arc marking the angle or the area between the arms of the angle and the arc marking angle. These two erroneous strategies for determining the size of angles have been found by a few studies (Clausen-May,2008; Devichi & Munier, 2013; Kim & Lee, 2014; Mithcelmore, 1998;Wilson & Adams, 1992). The last question, whose aim was to determine how well students can adapt theangle concept to real life, consisted of an observer and a barrier, and students were asked to color the hidden area behind the barrier. Only 2 of 104students correctly responded this question, whereas 19 of 104 students drew rays from the observer to both sides of the barrier, and colored the area covered by the rays, the observer and barrier. While 35 of 104 students just colored behind the barrier without using any strategies, 33 of 104 students constructed two perpendicular lines at the both end of the barrier, and colored behind the barrier. Similarly, Munier, Devinci and Merle (2008) found that this incorrect strategy was used by 27% of students.

Consequently, we found that although the participants in this study were high achievers, they still held several misconceptions on the angle concept and had difficulties in adapting the angle concept to real life.

Keywords: the angle concept;misconceptions; erroneous answers; high achievers

References

Clausen-May, T. (2008). AnotherAngle on Angles. Australian Primary Mathematics Classroom, 13(1),4–8.

Devichi, C., & Munier, V.(2013). About the concept of angle in elementary school: Misconceptions andteaching sequences. The Journal of Mathematical Behavior, 32(1),1–19. http://doi.org/10.1016/j.jmathb.2012.10.001

Fyhn, A. B. (2006). A climbinggirl’s reflections about angles. The Journal of Mathematical Behavior, 25(2),91–102. http://doi.org/10.1016/j.jmathb.2006.02.004

Henderson, D. W., & Taimina,D. (2005). Experiencing geometry: Euclidean and non-Euclidean with history(3rd ed.). New York, USA: Prentice Hall.

Kim, O.-K., & Lee, J. H.(2014). Representations of Angle and Lesson Organization in Korean and AmericanElementary Mathematics Curriculum Programs. KAERA Research Forum, 1(3),28–37.

Mitchelmore, M. C., & White,P. (1998). Development of angle concepts: A framework for research. MathematicsEducation Research Journal, 10(3), 4–27.

Mithcelmore, M. C. (1998). Youngstudents’ concepts of turning and angle. Cognition and Instruction, 16(3),265–284.

Munier, V., Devichi, C., &Merle, H. (2008). A Physical Situation as a Way to Teach Angle. TeachingChildren Mathematics, 14(7), 402–407.

Wilson, P. S., & Adams, V.M. (1992). A Dynamic Way to Teach Angle and Angle Measure. ArithmeticTeacher, 39(5), 6–13.