11 resultados para RENAL ACTIVITY
Resumo:
Background: Chronic kidney disease (CKD) patients on dialysis are prone to vitamin D insufficiency despite oral vitamin D supplementation. Here, we studied whether narrow-band ultraviolet B (NB-UVB) exposures improve vitamin D balance.
Methods: 14 haemodialysis patients and 15 healthy subjects receiving oral cholecalciferol 20 µg daily got nine NB-UVB exposures on the entire body. Serum 25-hydroxyvitamin D (25(OH)D) was measured by radioimmunoassay. Cutaneous mRNA expression levels of CYP27A1 and CYP27B1, two enzymes required for hydroxylation of vitamin D into its active metabolite, were also measured.
Results: The baseline serum 25(OH)D concentration was 57.6 ± 18.2 nmol/l in the CKD patients and 74.3 ± 14.8 nmol/l in the healthy subjects. The NB-UVB course increased serum 25(OH)D by 14.0 nmol/l (95% CI 8.7-19.5) and 17.0 nmol/l (CI 13.7-20.2), respectively. At baseline the CKD patients showed significantly increased CYP27B1 levels compared to the healthy subjects.
Conclusions: A short NB-UVB course is an efficient way to improve vitamin D balance in CKD patients on dialysis who are receiving oral vitamin D supplementation. The increased cutaneous CYP27B1 levels in the CKD patients suggest that the loss of renal activity of this enzyme is at least partially compensated for by the skin.
Resumo:
The molecular pathogenesis of diabetic nephropathy (DN), the leading cause of end-stage renal disease worldwide, is complex and not fully understood. Transforming growth factor-beta (TGF-beta1) plays a critical role in many fibrotic disorders, including DN. In this study, we report protein kinase B (PKB/Akt) activation as a downstream event contributing to the pathophysiology of DN. We investigated the potential of PKB/Akt to mediate the profibrotic bioactions of TGF-beta1 in kidney. Treatment of normal rat kidney epithelial cells (NRK52E) with TGF-beta1 resulted in activation of phosphatidylinositol 3-kinase (PI3K) and PKB/Akt as evidenced by increased Ser473 phosphorylation and GSK-3beta phosphorylation. TGF-beta1 also stimulated increased Smad3 phosphorylation in these cells, a response that was insensitive to inhibition of PI3K or PKB/Akt. NRK52E cells displayed a loss of zona occludins 1 and E-cadherin and a gain in vimentin and alpha-smooth muscle actin expression, consistent with the fibrotic actions of TGF-beta1. These effects were blocked with inhibitors of PI3K and PKB/Akt. Furthermore, overexpression of PTEN, the lipid phosphatase regulator of PKB/Akt activation, inhibited TGF-beta1-induced PKB/Akt activation. Interestingly, in the Goto-Kakizaki rat model of type 2 diabetes, we also detected increased phosphorylation of PKB/Akt and its downstream target, GSK-3beta, in the tubules, relative to that in control Wistar rats. Elevated Smad3 phosphorylation was also detected in kidney extracts from Goto-Kakizaki rats with chronic diabetes. Together, these data suggest that TGF-beta1-mediated PKB/Akt activation may be important in renal fibrosis during diabetic nephropathy.
Resumo:
Intermedin (IMD) is a novel peptide related to calcitonin gene-related peptide (CGRP) and adrenomedullin (AM). Proteolytic processing of a larger precursor yields a series of biologically active C-terminal fragments, IMD1–53, IMD1–47 and IMD8–47. IMD shares a family of receptors with AM and CGRP composed of a calcitonin-receptor like receptor (CALCRL) associated with one of three receptor activity modifying proteins (RAMP). Compared to CGRP, IMD is less potent at CGRP1 receptors but more potent at AM1 receptors and AM2 receptors; compared to AM, IMD is more potent at CGRP1 receptors but less potent at AM1 and AM2 receptors. The cellular and tissue distribution of IMD overlaps in some aspects with that of CGRP and AM but is distinct from both. IMD is present in neonatal but absent or expressed sparsely, in adult heart and vasculature and present at low levels in plasma. The prominent localization of IMD in hypothalamus and pituitary and in kidney is consistent with a physiological role in the central and peripheral regulation of the circulation and water-electrolyte homeostasis. IMD is a potent systemic and pulmonary vasodilator, influences regional blood flow and augments cardiac contractility. IMD protects myocardium from the deleterious effects of oxidative stress associated with ischaemia-reperfusion injury and exerts an anti-growth effect directly on cardiomyocytes to oppose the influence of hypertrophic stimuli. The robust increase in expression of the peptide in hypertrophied and ischaemic myocardium indicates an important protective role for IMD as an endogenous counter-regulatory peptide in the heart.
Resumo:
Induced in high glucose-1 (IHG-1) is an evolutionarily conserved gene transcript upregulated by high extracellular glucose concentrations, but its function is unknown. Here, it is reported that the abundance of IHG-1 mRNA is nearly 10-fold higher in microdissected, tubule-rich renal biopsies from patients with diabetic nephropathy compared with control subjects. In the diabetic nephropathy specimens, in situ hybridization localized IHG-1 to tubular epithelial cells along with TGF-beta1 and activated Smad3, suggesting a possible role in the development of tubulointerstitial fibrosis. Supporting this possibility, IHG-1 mRNA and protein expression also increased with unilateral ureteral obstruction. In the HK-2 proximal tubule cell line, overexpression of IHG-1 increased TGF-beta1-stimulated expression of connective tissue growth factor and fibronectin. IHG-1 was found to amplify TGF-beta1-mediated transcriptional activity by increasing and prolonging phosphorylation of Smad3. Conversely, inhibition of endogenous IHG-1 with small interference RNA suppressed transcriptional responses to TGF-beta1. In summary, IHG-1, which increases in diabetic nephropathy, may enhance the actions of TGF-beta1 and contribute to the development of tubulointerstitial fibrosis.
Resumo:
1. Since salt depletion stimulates the renal prostaglandin system to maintain renal function, the effects of indomethacin and ibuprofen upon renal haemodynamics, electrolyte excretion and renin release were examined in eight healthy male volunteers on a salt restricted diet, before and after frusemide administration. 2. Neither indomethacin (50 mg) nor ibuprofen (400 mg and 800 mg) affected renal blood flow, glomerular filtration rate or electrolyte excretion before frusemide. 3. Renal blood flow and glomerular filtration rate were significantly increased in the first 20 min after frusemide. These changes were significantly attenuated by indomethacin compared with placebo and ibuprofen 400 mg. Frusemide-induced diuresis but not natriuresis was inhibited by all treatments. 4. Both nonsteroidal agents inhibited equally the rise in renin activity seen after frusemide. 5. In this group of healthy volunteers on a salt restricted diet, ibuprofen and indomethacin had no detrimental effects on renal function in the absence of frusemide. The changes in renal haemodynamics due to frusemide were suppressed more by indomethacin than by ibuprofen, probably reflecting the more potent nature of indomethacin as an inhibitor of prostaglandin synthesis.
Resumo:
1. This study has compared the effects of ibuprofen and indomethacin upon renal haemodynamics, electrolyte excretion and renin release in the presence and absence of frusemide under sodium replete conditions in eight healthy volunteers. 2. Neither ibuprofen (400 mg and 800 mg) nor indomethacin (50 mg) affected renal blood flow, glomerular filtration rate or electrolyte excretion in the basal state. 3. Frusemide had no effect on renal blood flow, but significantly increased glomerular filtration rate. This latter change was suppressed significantly only by ibuprofen 400 mg. Frusemide-induced diuresis was inhibited by all treatments, while natriuresis following frusemide was inhibited by indomethacin only. 4. Significant increments in plasma renin activity, which were suppressed by all treatments, were observed after frusemide. The degree of inhibition of the renin responses was significantly greater in the presence of indomethacin than with either dose of ibuprofen. 5. In a sodium replete setting in healthy volunteers, indomethacin and ibuprofen had no detrimental effects on basal renal function. In the presence of frusemide, indomethacin had more anti-natriuretic and renin-suppressing effect than ibuprofen. There was no evidence for a dose-related effect of ibuprofen.
Resumo:
1. The effects of equipotent doses of frusemide (10 mg and 100 mg) and bumetanide (250 micrograms and 2.5 mg) upon renal and peripheral vascular responses, urinary prostaglandin excretion, plasma renin activity, angiotensin II and noradrenaline were compared in nine healthy volunteers. 2. Frusemide (10 mg and 100 mg) and bumetanide (2.5 mg) increased renal blood flow acutely compared with placebo but bumetanide (250 micrograms) had no effect. The changes in peripheral vascular responses were not significantly different from placebo. 3. Urinary prostaglandin metabolite excretion was acutely increased by all treatments, with no inter-treatment difference. Plasma renin activity was increased acutely by both doses of frusemide and by bumetanide (2.5 mg) compared with placebo and to bumetanide (250 micrograms). There were no differences between the latter two treatments. Angiotensin II was increased significantly 30 min after frusemide 100 mg and bumetanide 2.5 mg, and by all four treatments at 50 min when compared with placebo. There were no significant differences between either of the low doses or the higher doses. Plasma noradrenaline was unchanged by all treatments. 4. Frusemide 100 mg and bumetanide 2.5 mg have the same effects on the renal vasculature and the renin-angiotensin-prostaglandin system. Under the conditions of this study, frusemide 10 mg had different effects on plasma renin activity than bumetanide 250 micrograms.
Resumo:
The effects of increasing oral doses of caffeine (45, 90, 180 and 360 mg) on effective renal plasma flow (ERPF), plasma renin activity (PRA), serum electrolytes, plasma noradrenaline, blood pressure and heart rate were studied in eight healthy male volunteers. Urine volume was increased by 360 mg of caffeine only. At caffeine doses greater than 90 mg urinary sodium excretion was significantly increased. There were no changes in ERPF. Serum potassium was significantly reduced by 360 mg of caffeine. Caffeine increased systolic pressure in a dose related manner. Diastolic pressure was also increased, but not in relation to dose. A 360 mg dose of caffeine produced a late increase in heart rate. These changes were not associated with any alterations in PRA or in plasma noradrenaline.
Resumo:
Cardiovascular disease is the major cause of morbidity and mortality in patients with end-stage renal failure. Increased free radical production and antioxidant depletion may contribute to the greatly increased risk of atherosclerosis in these patients. Glutathione peroxidase (GPX) is an important antioxidant, the plasma form of which is synthesized mainly in the kidney (eGPX). The aim of this study was to assess the activity of eGPX in patients with end-stage renal failure on haemodialysis. Venous blood was collected from 87 haemodialysis patients immediately prior to and after dialysis and from 70 healthy controls. Serum eGPX activity was measured using hydrogen peroxide as substrate and immunoreactivity determined by ELISA. eGPX activity was significantly reduced in dialysis patients when compared to controls (106 +/- 2.7 and 281 +/- 3.6 U/l respectively, p <0.001). Following haemodialysis, eGPX activity rose significantly to 146 +/- 3.8 U/l, p <0.001, although remaining below control values (p <0.005). Immunoreactive eGPX, however, was similar in all groups (pre-dialysis 14.10 +/- 1.26 microg/ml, post-dialysis 14.58 +/- 1.35 microg/ml, controls 15.20 +/- 1.62 microg/ml, p = NS). A decrease was observed in the specific activity of eGPX in patients when compared to controls (8.81 +/- 1.14, 10.71 +/- 1.54 and 21.97 +/- 1.68 U/mg respectively, p <0.0001). eGPX activity is impaired in patients undergoing haemodialysis and so may contribute to atherogenesis in renal failure.
Resumo:
Background
Chronic kidney disease is now regarded as a risk factor for cardiovascular disease. The impact of occupational or non-occupational physical activity (PA) on moderate decreases of renal function is uncertain.
ObjectivesWe aimed to identify the potential association of PA (occupational and leisure-time) on early decline of estimated glomerular filtration rate (eGFR) and to determine the potential mediating effect of PA on the relationship between eGFR and heart disease.
MethodsFrom the PRIME study analyses were conducted in 1058 employed men. Energy expended during leisure, work and commuting was calculated. Linear regression analyses were used to determine the link between types of PA and moderate decrements of eGFR determined with the KDIGO guideline at the baseline assessment. Cox proportional hazards analyses were used to explore the potential effect of PA on the relationship between eGFR and heart disease, ascertained during follow-up over 10 years.
ResultsFor these employed men, and after adjustment for known confounders of GFR change, more time spent sitting at work was associated with increased risk of moderate decline in kidney function, while carrying objects or being active at work was associated with decreased risk. In contrast, no significant link with leisure PA was apparent. No potential mediating effect of occupational PA was found for the relationship between eGFR and coronary heart disease.
ConclusionOccupational PA (potential modifiable factors) could provide a dual role on early impairment of renal function, without influence on the relationship between early decrease of e-GFR and CHD risk.
Resumo:
Background and purpose: The manipulation of tumour blood supply and thus oxygenation is a potentially important strategy for improving the treatment of solid tumours by radiation. Increased knowledge about the characteristics that distinguish the tumour vasculature from its normal counterparts may enable tumour blood flow to be more selectively modified, Nicotinamide (NA) causes relaxation of preconstricted normal and tumour-supply arteries in rats. It has also been shown to affect microregional blood flow in human tumours. Direct effects of NA on human tumour supply arteries have not previously been reported. This paper describes our evaluation of the effects of NA on two parameters: 'spontaneous', oscillatory contractile activity and agonist (phenylephrine)-induced constriction in the arteries supplying human renal cell carcinomas.
Materials and methods: Isolated renal cell carcinoma feeder vessels were perfused in an organ bath with the alpha(1)-adrenoceptor agonist phenylephrine (PE). When the arteries had reached a plateau of constriction, nicotinamide (8.2 mM) was added to the perfusate and changes in perfusion pressure were measured.
Results: PE (10 mu M) induced a sustained constriction in the majority of the renal cell carcinoma feeder vessels examined, demonstrating that they retain contractile characteristics, at least in response to this alpha(1)-adrenoceptor agonist. In combination with NA (8.2 mM) the constriction was significantly attenuated in half of the preparations. In addition, seven arteries exhibited spontaneous contractile activity which was significantly attenuated by NA in six of them.
Conclusions: NA can significantly attenuate both 'spontaneous' and agonist-induced constrictions in tumour-recruited human arteries, though not all arteries are sensitive. Published by Elsevier Science Ireland Ltd.