24 resultados para REGULATORY NETWORKS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study is to compare the inferability of various synthetic as well as real biological regulatory networks. In order to assess differences we apply local network-based measures. That means, instead of applying global measures, we investigate and assess an inference algorithm locally, on the level of individual edges and subnetworks. We demonstrate the behaviour of our local network-based measures with respect to different regulatory networks by conducting large-scale simulations. As inference algorithm we use exemplarily ARACNE. The results from our exploratory analysis allow us not only to gain new insights into the strength and weakness of an inference algorithm with respect to characteristics of different regulatory networks, but also to obtain information that could be used to design novel problem-specific statistical estimators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background
Inferring gene regulatory networks from large-scale expression data is an important problem that received much attention in recent years. These networks have the potential to gain insights into causal molecular interactions of biological processes. Hence, from a methodological point of view, reliable estimation methods based on observational data are needed to approach this problem practically.

Results
In this paper, we introduce a novel gene regulatory network inference (GRNI) algorithm, called C3NET. We compare C3NET with four well known methods, ARACNE, CLR, MRNET and RN, conducting in-depth numerical ensemble simulations and demonstrate also for biological expression data from E. coli that C3NET performs consistently better than the best known GRNI methods in the literature. In addition, it has also a low computational complexity. Since C3NET is based on estimates of mutual information values in conjunction with a maximization step, our numerical investigations demonstrate that our inference algorithm exploits causal structural information in the data efficiently.

Conclusions
For systems biology to succeed in the long run, it is of crucial importance to establish methods that extract large-scale gene networks from high-throughput data that reflect the underlying causal interactions among genes or gene products. Our method can contribute to this endeavor by demonstrating that an inference algorithm with a neat design permits not only a more intuitive and possibly biological interpretation of its working mechanism but can also result in superior results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inference of gene regulatory networks gained within recent years a considerable interest in the biology and biomedical community. The purpose of this paper is to investigate the influence that environmental conditions can exhibit on the inference performance of network inference algorithms. Specifically, we study five network inference methods, Aracne, BC3NET, CLR, C3NET and MRNET, and compare the results for three different conditions: (I) observational gene expression data: normal environmental condition, (II) interventional gene expression data: growth in rich media, (III) interventional gene expression data: normal environmental condition interrupted by a positive spike-in stimulation. Overall, we find that different statistical inference methods lead to comparable, but condition-specific results. Further, our results suggest that non-steady-state data enhance the inferability of regulatory networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Urothelial pathogenesis is a complex process driven by an underlying network of interconnected genes. The identification of novel genomic target regions and gene targets that drive urothelial carcinogenesis is crucial in order to improve our current limited understanding of urothelial cancer (UC) on the molecular level. The inference of genome-wide gene regulatory networks (GRN) from large-scale gene expression data provides a promising approach for a detailed investigation of the underlying network structure associated to urothelial carcinogenesis.

METHODS: In our study we inferred and compared three GRNs by the application of the BC3Net inference algorithm to large-scale transitional cell carcinoma gene expression data sets from Illumina RNAseq (179 samples), Illumina Bead arrays (165 samples) and Affymetrix Oligo microarrays (188 samples). We investigated the structural and functional properties of GRNs for the identification of molecular targets associated to urothelial cancer.

RESULTS: We found that the urothelial cancer (UC) GRNs show a significant enrichment of subnetworks that are associated with known cancer hallmarks including cell cycle, immune response, signaling, differentiation and translation. Interestingly, the most prominent subnetworks of co-located genes were found on chromosome regions 5q31.3 (RNAseq), 8q24.3 (Oligo) and 1q23.3 (Bead), which all represent known genomic regions frequently deregulated or aberated in urothelial cancer and other cancer types. Furthermore, the identified hub genes of the individual GRNs, e.g., HID1/DMC1 (tumor development), RNF17/TDRD4 (cancer antigen) and CYP4A11 (angiogenesis/ metastasis) are known cancer associated markers. The GRNs were highly dataset specific on the interaction level between individual genes, but showed large similarities on the biological function level represented by subnetworks. Remarkably, the RNAseq UC GRN showed twice the proportion of significant functional subnetworks. Based on our analysis of inferential and experimental networks the Bead UC GRN showed the lowest performance compared to the RNAseq and Oligo UC GRNs.

CONCLUSION: To our knowledge, this is the first study investigating genome-scale UC GRNs. RNAseq based gene expression data is the data platform of choice for a GRN inference. Our study offers new avenues for the identification of novel putative diagnostic targets for subsequent studies in bladder tumors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We develop an approach utilizing randomized genotypes to rigorously infer causal regulatory relationships among genes at the transcriptional level, based on experiments in which genotyping and expression profiling are performed. This approach can be used to build transcriptional regulatory networks and to identify putative regulators of genes. We apply the method to an experiment in yeast, in which genes known to be in the same processes and functions are recovered in the resulting transcriptional regulatory network.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the aftermath of the financial crash of 2008, policy makers operating in international financial regulatory networks discovered macroprudential regulation (MPR), but macroprudential regulation has had a stunted or arrested development that can be explained with reference to five factors that are recounted in this article

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Motivation: The inference of regulatory networks from large-scale expression data holds great promise because of the potentially causal interpretation of these networks. However, due to the difficulty to establish reliable methods based on observational data there is so far only incomplete knowledge about possibilities and limitations of such inference methods in this context.

Results: In this article, we conduct a statistical analysis investigating differences and similarities of four network inference algorithms, ARACNE, CLR, MRNET and RN, with respect to local network-based measures. We employ ensemble methods allowing to assess the inferability down to the level of individual edges. Our analysis reveals the bias of these inference methods with respect to the inference of various network components and, hence, provides guidance in the interpretation of inferred regulatory networks from expression data. Further, as application we predict the total number of regulatory interactions in human B cells and hypothesize about the role of Myc and its targets regarding molecular information processing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mammalian nervous system exerts essential control on many physiological processes in the organism and is itself controlled extensively by a variety of genetic regulatory mechanisms. microRNA (miR), an abundant class of small non-coding RNA, are emerging as important post-transcriptional regulators of gene expression in the brain. Increasing evidence indicates that miR regulate both the development and function of the nervous system. Moreover, deficiency in miR function has also been implicated in a number of neurological disorders. Expression profile analysis of miR is necessary to understand their complex role in the regulation of gene expression during the development and differentiation of cells. Here we present a comparative study of miR expression profiles in neuroblastoma, in cortical development, and in neuronal differentiation of embryonic stem (ES) cells. By microarray profiling in combination with real time PCR we show that miR-7 and miR-214 are modulated in neuronal differentiation (as compared to miR-1, -16 and -133a), and control neurite outgrowth in vitro. These findings provide an important step toward further elucidation of miR function and miR-related gene regulatory networks in the mammalian central nervous system. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

From late 2008 onwards, in the space of six months, international financial regulatory networks centred around the Swiss city of Basel presided over a startlingly rapid ideational shift, the significance and importance of which remains to be deciphered. From being relatively unpopular and very much on the sidelines, the idea of macroprudential regulation (MPR) moved to the centre of the policy agenda and came to represent a new Basel consensus, as the principal interpretative frame, for financial technocrats and regulators seeking to diagnose and understand the financial crisis and to advance institutional blueprints for regulatory reform. This article sets out to explain how and why that ideational shift occurred. It identifies four scoping conditions of presence, position, promotion, and plausibility, that account for the successful rise to prominence of macroprudential ideas through an insiders' coup d'état. The final section of the article argues that this macroprudential shift is an example of a ‘gestalt flip’ or third order change in Peter Hall's terms, but it is not yet a paradigm shift, because the development of first order policy settings and second order policy instruments is still ongoing, giving the macroprudential ideational shift a highly contested and contingent character.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Modern biology and medicine aim at hunting molecular and cellular causes of biological functions and diseases. Gene regulatory networks (GRN) inferred from gene expression data are considered an important aid for this research by providing a map of molecular interactions. Hence, GRNs have the potential enabling and enhancing basic as well as applied research in the life sciences. In this paper, we introduce a new method called BC3NET for inferring causal gene regulatory networks from large-scale gene expression data. BC3NET is an ensemble method that is based on bagging the C3NET algorithm, which means it corresponds to a Bayesian approach with noninformative priors. In this study we demonstrate for a variety of simulated and biological gene expression data from S. cerevisiae that BC3NET is an important enhancement over other inference methods that is capable of capturing biochemical interactions from transcription regulation and protein-protein interaction sensibly. An implementation of BC3NET is freely available as an R package from the CRAN repository. © 2012 de Matos Simoes, Emmert-Streib.