5 resultados para REACTIVE APPROACH


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This short review establishes the conceptual bases and discusses the principal aspects of P4-shorthand for predictive, preventive, personalized and participatory medicine-medicine, in the framework of infectious diseases. P4 medicine is a new way to approach medical care; instead of acting when the patient is sick, physicians will be able to detect early warnings of disease to take early action. Furthermore, people might even be able to adjust their lifestyles to prevent disease. P4 medicine is fuelled by systems approaches to disease, including methods for personalized genome sequencing and new computational techniques for building dynamic disease predictive networks from massive amounts of data from a variety of OMICs. An excellent example of the effectiveness of the P4 medicine approach is the change in cancer treatments. Emphasis is placed on early detection, followed by genotyping of the patient to use the most adequate treatment according to the genetic background. Cardiovascular diseases and perhaps even neurodegenerative disorders will be the next targets for P4 medicine. The application of P4 medicine to infectious diseases is still in its infancy, but is a promising field that will provide much benefit to both the patients and the health-care system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers.

Methods: We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals.

Results: We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk.

Conclusions: This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many natural cyclic peptides have potent and potentially useful biological activities. Their use as therapeutic starting points is often limited by the quantities available, the lack of known biological targets and the practical limits on diversification to fine-tune their properties. We report the use of enzymes from the cyanobactin family to heterocyclise and macrocyclise chemically synthesised substrates so as to allow larger-scale syntheses and better control over derivatisation. We have made cyclic peptides containing orthogonal reactive groups, azide or dehydroalanine, that allow chemical diversification, including the use of fluorescent labels that can help in target identification. We show that the enzymes are compatible and efficient with such unnatural substrates. The combination of chemical synthesis and enzymatic transformation could help renew interest in investigating natural cyclic peptides with biological activity, as well as their unnatural analogues, as therapeutics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A large eddy simulation is performed to study the deflagration to detonation transition phenomenon in an obstructed channel containing premixed stoichiometric hydrogen–air mixture. Two-dimensional filtered reactive Navier–Stokes equations are solved utilizing the artificially thickened flame approach (ATF) for modeling sub-grid scale combustion. To include the effect of induction time, a 27-step detailed mechanism is utilized along with an in situ adaptive tabulation (ISAT) method to reduce the computational cost due to the detailed chemistry. The results show that in the slow flame propagation regime, the flame–vortex interaction and the resulting flame folding and wrinkling are the main mechanisms for the increase of the flame surface and consequently acceleration of the flame. Furthermore, at high speed, the major mechanisms responsible for flame propagation are repeated reflected shock–flame interactions and the resulting baroclinic vorticity. These interactions intensify the rate of heat release and maintain the turbulence and flame speed at high level. During the flame acceleration, it is seen that the turbulent flame enters the ‘thickened reaction zones’ regime. Therefore, it is necessary to utilize the chemistry based combustion model with detailed chemical kinetics to properly capture the salient features of the fast deflagration propagation.