4 resultados para RATE DYNAMICS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present self-consistent, axisymmetric core-collapse supernova simulations performed with the Prometheus-Vertex code for 18 pre-supernova models in the range of 11–28 M ⊙, including progenitors recently investigated by other groups. All models develop explosions, but depending on the progenitor structure, they can be divided into two classes. With a steep density decline at the Si/Si–O interface, the arrival of this interface at the shock front leads to a sudden drop of the mass-accretion rate, triggering a rapid approach to explosion. With a more gradually decreasing accretion rate, it takes longer for the neutrino heating to overcome the accretion ram pressure and explosions set in later. Early explosions are facilitated by high mass-accretion rates after bounce and correspondingly high neutrino luminosities combined with a pronounced drop of the accretion rate and ram pressure at the Si/Si–O interface. Because of rapidly shrinking neutron star radii and receding shock fronts after the passage through their maxima, our models exhibit short advection timescales, which favor the efficient growth of the standing accretion-shock instability. The latter plays a supportive role at least for the initiation of the re-expansion of the stalled shock before runaway. Taking into account the effects of turbulent pressure in the gain layer, we derive a generalized condition for the critical neutrino luminosity that captures the explosion behavior of all models very well. We validate the robustness of our findings by testing the influence of stochasticity, numerical resolution, and approximations in some aspects of the microphysics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the growth of the explosion energy after shock revival in neutrino-driven explosions in two and three dimensions (2D/3D) using multi-group neutrino hydrodynamics simulations of an 11.2 M⊙ star. The 3D model shows a faster and steadier growth of the explosion energy and already shows signs of subsiding accretion after one second. By contrast, the growth of the explosion energy in 2D is unsteady, and accretion lasts for several seconds as confirmed by additional long-time simulations of stars of similar masses. Appreciable explosion energies can still be reached, albeit at the expense of rather high neutron star masses. In 2D, the binding energy at the gain radius is larger because the strong excitation of downward-propagating g modes removes energy from the freshly accreted material in the downflows. Consequently, the mass outflow rate is considerably lower in 2D than in 3D. This is only partially compensated by additional heating by outward-propagating acoustic waves in 2D. Moreover, the mass outflow rate in 2D is reduced because much of the neutrino energy deposition occurs in downflows or bubbles confined by secondary shocks without driving outflows. Episodic constriction of outflows and vertical mixing of colder shocked material and hot, neutrino-heated ejecta due to Rayleigh–Taylor instability further hamper the growth of the explosion energy in 2D. Further simulations will be necessary to determine whether these effects are generic over a wider range of supernova progenitors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce a hybrid method for dielectric-metal composites that describes the dynamics of the metallic system classically whilst retaining a quantum description of the dielectric. The time-dependent dipole moment of the classical system is mimicked by the introduction of projected equations of motion (PEOM) and the coupling between the two systems is achieved through an effective dipole-dipole interaction. To benchmark this method, we model a test system (semiconducting quantum dot-metal nanoparticle hybrid). We begin by examining the energy absorption rate, showing agreement between the PEOM method and the analytical rotating wave approximation (RWA) solution. We then investigate population inversion and show that the PEOM method provides an accurate model for the interaction under ultrashort pulse excitation where the traditional RWA breaks down.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A selected ion flow tube study of the reactions of a series of gas-phase atomic cations (S+, Xe+, O+, Kr+, N+, Ar+ and Ne+) and molecular ions (SF n+ (n = 1-5), CFn+ (n = 1-3), CF2Cl+, H3O+, NO+, N 2O+, CO2+, CO+, and N2+) spanning a large range of recombination energies (6.3-21.6 eV), with acetone, 1,1,1-trifluoroacetone, and hexafluoroacetone has been undertaken with the objective of exploring the nature of the reaction ion chemistry as the methyl groups in acetone are substituted for CF3. The reaction rate coefficients and product ion branching ratios for all 66 reactions, measured at 298 K, are reported. The experimental reaction rate coefficients are compared to theoretically calculated collisional values. Several distinct reaction processes were observed among the large number of reactions studied, including charge transfer (non-dissociative and dissociative), abstraction, ion-molecule associations and, in the case of the reactions involving the reagent ion H3O+, proton transfer.