53 resultados para RABBIT
Resumo:
Isolated interstitial ("pacemaker") cells from rabbit urethra were examined using the perforated-patch technique. Under voltage clamp at -60 mV, these cells fired large spontaneous transient inward currents (STICs), averaging -860 pA and >1 s in duration, which could account for urethral pacemaker activity. Spontaneous transient outward currents (STOCs) were also observed and fell into two categories, "fast" (1 s in duration). The latter were coupled to STICs, suggesting that they shared the same mechanism, while the former occurred independently at faster rates. All of these currents were abolished by cyclopiazonic acid, caffeine, or ryanodine, suggesting that they were activated by Ca(2+) release. When D-myo-inositol 1,4,5-trisphosphate (IP(3))-sensitive stores were blocked with 2-aminoethoxydiphenyl borate, the STICs and slow STOCs were abolished, but the fast STOCs remained. In contrast, the fast STOCs were more nifedipine sensitive than the STICs or the slow STOCs. These results suggest that while fast STOCs are mediated by a mechanism similar to STOCs in smooth muscle, STICs and slow STOCs are driven by IP(3). These results support the hypothesis that pacemaker activity in the urethra is driven by the IP(3)-sensitive store. PMID: 11287348 [PubMed - indexed for MEDLINE]
Resumo:
1. Effects of endothelin-1 (Et-1) were studied on membrane currents in choroidal arteriolar smooth muscle by using perforated patch-clamp recordings. 2. Et-1 (10 nM) activated oscillatory Ca(2+)-activated Cl(-)-currents (I(Cl(Ca))) which could not be reversed by washing out. 3. Currents through L-type Ca(2+) channels were resolved in a divalent free medium (I(Ca(L)Na)). Et-1 reduced I(Ca(L)Na) by 75 +/- 7% within 30 s and this effect faded over 5 min, when the depression remained constant. On washing out Et-1, I(Ca(L)Na) almost completely recovered within 10 s. 4. BQ123 (1 microM), a peptide Et(A) receptor blocker, prevented the activation of I(Cl(Ca)), but failed to inhibit I(Cl(Ca)) transients once they had been initiated. In contrast, BQ123 not only prevented but also reversed the inhibition of I(Ca(L)Na) by Et-1. BQ788 (1 microM), an Et(B) receptor antagonist, did not prevent the activation of I(Cl(Ca)) or the inhibition of I(Ca(L)Na) by Et-1. 5. ABT-627 (10 nM), a non-peptide Et(A) receptor antagonist also blocked the activation of I(Cl(Ca)). However, on I(Ca(L)Na), ABT-627 (10 nM) mimicked the action of Et-1 an effect blocked by BQ123 suggesting that ABT-627 acted as an agonist. 6. The data are consistent with choroidal arteriolar smooth muscle cells having two types of Et(A) receptor, one where BQ123 is an antagonist and ABT-627 an agonist, where ligands dissociate freely and this receptor is coupled to inhibition of L-type Ca(2+) channels. In the other, BQ123 and ABT-627 are both antagonists and with Et-1 the receptor converts to a high affinity state producing the classical irreversible activation I(Cl(Ca)).
Resumo:
Mesenchymal stem cells (MSCs) were demonstrated to exist within peripheral blood (PB) of several mammalian species including human, guinea pig, mice, rat, and rabbit. Whether or not the PB derived MSCs (PBMSCs) could enhance the regeneration of large bone defects have not been reported. In this study, rabbit MSCs were obtained from mononuclear cells (MNCs) cultures of both the PB and bone marrow (BM) origin. The number of PBMSCs was relatively lower, with the colony forming efficiency (CFE) ranging from 1.2-13 per million MNCs. Under specific inductive conditions, PBMSCs differentiated into osteoblasts, chondrocytes, and adipocytes, showing multi- differentiation ability similar to BMMSCs. Bilateral 20 mm critical-sized bone defects were created in the ulnae of twelve 6-month old New Zealand white rabbits. The defects were treated with allogenic PBMSCs/Skelite (porous calcium phosphate resorbable substitute), BMMSCs/Skelite, PBMNCs/Skelite, Skelite alone and left empty for 12 weeks. Bone regeneration was evaluated by serial radiography, peripheral quantitative computed tomography (pQCT), and histological examinations. The x-ray scores and the pQCT total bone mineral density in the PBMSCs/Skelite and BMMSCs/Skelite treated groups were significantly greater than those of the PBMNCs/Skelite and Skelite alone groups (p
Resumo:
OBJECTIVE: To identify interstitial cells (ICs) in the wall of the rabbit urethra using antibodies to the Kit receptor, and to examine their location, morphology and relationship with nerves and smooth muscle cells (SMCs), as studies of enzymatically isolated cells from the rabbit urethra have established that there are specialized cells that show spontaneous electrical activity and have morphological properties of ICs. MATERIALS AND METHODS: Urethral tissues from rabbits were fixed, labelled with antibodies and examined with confocal microscopy. Some specimens were embedded in paraffin wax and processed for histology. Histological sections from the most proximal third and mid-third region of rabbit urethra were stained with Masson's Trichrome to show their cellular arrangement. RESULTS: Sections from both regions had outer longitudinal and inner circular layers of SM, and a lamina propria containing connective tissue and blood vessels; the lumen was lined with urothelial cells. The mid-third region had a more developed circular SM layer than the most-proximal samples, and had extensive inner longitudinal SM bundles in the lamina propria. Labelling with anti-Kit revealed immunopositive cells within the wall of the rabbit urethra, in the circular and longitudinal layers of the muscularis. Double-labelling with an antibody to SM myosin showed Kit-positive cells on the boundary of the SM bundles, orientated parallel to the axis of the bundles. Others were in spaces between the bundles and often made contact with each other. Kit-positive cells were either elongated, with several lateral branches, or stellate with branches coming from a central soma. Similar cells could be labelled with vimentin antibodies. Their relationship with intramural nerves was examined by double immunostaining with an anti-neurofilament antibody. There were frequent points of contact between Kit-positive cells and nerves, with similar findings in specimens double-immunostained with anti-neuronal nitric oxide synthase (nNOS). CONCLUSION: Kit-positive ICs were found within the SM layers of the rabbit urethra, in association with nerves, on the edge of SM bundles and in the interbundle spaces. The contact with nNOS-containing neurones might imply participation in the nitrergic inhibitory neurotransmission of the urethra. PMID: 17212607 [PubMed - indexed for MEDLINE]
Resumo:
Rabbit urethral smooth muscle cells were studied at 37 degrees C by using the amphotericin B perforated-patch configuration of the patch-clamp technique, using Cs(+)-rich pipette solutions. Two components of current, with electrophysiological and pharmacological properties typical of T- and L-type Ca(2+) currents, were recorded. Fitting steady-state inactivation curves for the L current with a Boltzmann equation yielded a V(1/2) of -41 +/- 3 mV. In contrast, the T current inactivated with a V(1/2) of -76 +/- 2 mV. The L currents were reduced by nifedipine (IC(50) = 225 +/- 84 nM), Ni(2+) (IC(50) = 324 +/- 74 microM), and mibefradil (IC(50) = 2.6 +/- 1.1 microM) but were enhanced when external Ca(2+) was substituted with Ba(2+). The T current was little affected by nifedipine at concentrations
Resumo:
1. Collagenase dispersal of strips of rabbit urethra yielded, in addition to normal spindle-shaped smooth muscle cells, a small proportion of branched cells which resembled the interstitial cells of Cajal dispersed from canine colon. These were clearly distinguishable from smooth muscle in their appearance under the phase-contrast microscope, their immunohistochemistry and their ultrastructure. They had abundant vimentin filaments but no myosin, a discontinuous basal lamina, sparse rough endoplasmic reticulum, many mitochondria and a well-developed smooth endoplasmic reticulum. 2. Interstitial cells were non-contractile but exhibited regular spontaneous depolarisations in current clamp. These could be increased in frequency by noradrenaline and blocked by perfusion with calcium-free solution. In voltage clamp they showed abundant calcium-activated chloride current and spontaneous transient inward currents which could be blocked by chloride channel blockers. 3. The majority of smooth muscle cells were vigorously contractile when stimulated but did not show spontaneous electrical activity in current clamp. In voltage clamp, smooth muscle cells showed very little calcium-activated chloride current. 4. We conclude that there are specialised pacemaking cells in the rabbit urethra that may be responsible for initiating the slow waves recorded from smooth muscle cells in the intact syncitium.
Resumo:
1. In almost all studies involving localization or quantitation of regulatory peptides, an essential prerequisite is the generation of specific antisera in rabbits. Despite this almost universal practice, the primary structures of some established regulatory peptides, such as pancreatic polypeptide (PP), of the rabbit, remain unknown.