2 resultados para Quantum-mechanical calculation
Resumo:
The state of a system in classical mechanics can be uniquely reconstructed if we know the positions and the momenta of all its parts. In 1958 Pauli has conjectured that the same holds for quantum mechanical systems. The conjecture turned out to be wrong. In this paper we provide a new set of examples of Pauli pairs, being the pairs of quantum states indistinguishable by measuring the spatial location and momentum. In particular, we construct a new set of spatially localized Pauli pairs.
Resumo:
We apply the formalism of quantum estimation theory to extract information about potential collapse mechanisms of the continuous spontaneous localisation (CSL) form.
In order to estimate the strength with which the field responsible for the CSL mechanism couples to massive systems, we consider the optomechanical interaction
between a mechanical resonator and a cavity field. Our estimation strategy passes through the probing of either the state of the oscillator or that of the electromagnetic field that drives its motion. In particular, we concentrate on all-optical measurements, such as homodyne and heterodyne measurements.
We also compare the performances of such strategies with those of a spin-assisted optomechanical system, where the estimation of the CSL parameter is performed
through time-gated spin-like measurements.