1 resultado para Pyramid
Filtro por publicador
- Academic Archive On-line (Jönköping University; Sweden) (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Aston University Research Archive (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (7)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (4)
- Brock University, Canada (3)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CentAUR: Central Archive University of Reading - UK (8)
- Central European University - Research Support Scheme (1)
- Cochin University of Science & Technology (CUSAT), India (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (6)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (8)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (2)
- Digital Peer Publishing (4)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (7)
- Duke University (1)
- Institute of Public Health in Ireland, Ireland (3)
- Instituto Politécnico do Porto, Portugal (2)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- Ministerio de Cultura, Spain (4)
- National Center for Biotechnology Information - NCBI (1)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- REPOSITÓRIO ABERTO do Instituto Superior Miguel Torga - Portugal (1)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (4)
- Repositório da Produção Científica e Intelectual da Unicamp (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (16)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (32)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- Scielo Saúde Pública - SP (4)
- Scientific Open-access Literature Archive and Repository (1)
- Universidad del Rosario, Colombia (11)
- Universidad Politécnica de Madrid (7)
- Universidade do Minho (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (4)
- Universidade Metodista de São Paulo (3)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (3)
- Université de Montréal (1)
- Université de Montréal, Canada (4)
- Université Laval Mémoires et thèses électroniques (1)
- University of Michigan (17)
- University of Queensland eSpace - Australia (5)
Resumo:
In this work, we propose a biologically inspired appearance model for robust visual tracking. Motivated in part by the success of the hierarchical organization of the primary visual cortex (area V1), we establish an architecture consisting of five layers: whitening, rectification, normalization, coding and polling. The first three layers stem from the models developed for object recognition. In this paper, our attention focuses on the coding and pooling layers. In particular, we use a discriminative sparse coding method in the coding layer along with spatial pyramid representation in the pooling layer, which makes it easier to distinguish the target to be tracked from its background in the presence of appearance variations. An extensive experimental study shows that the proposed method has higher tracking accuracy than several state-of-the-art trackers.