6 resultados para Pseudomonas phage KZ


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This review discusses the potential application of bacterial viruses (phage therapy) towards the eradication of antibiotic resistant Pseudomonas aeruginosa in children with cystic fibrosis (CF). In this regard, several potential relationships between bacteria and their bacteriophages are considered. The most important aspect that must be addressed with respect to phage therapy of bacterial infections in the lungs of CF patients is in ensuring the continuity of treatment in light of the continual occurrence of resistant bacteria. This depends on the ability to rapidly select phages exhibiting an enhanced spectrum of lytic activity among several well-studied phage groups of proven safety. We propose a modular based approach, utilizing both mono-species and hetero-species phage mixtures. With an approach involving the visual recognition of characteristics exhibited by phages of well studied phage groups on lawns of the standard P. aeruginosa PAO1 strain, the simple and rapid enhancement of the lytic spectrum of cocktails is permitted, allowing the development of tailored preparations for patients capable of circumventing problems associated with phage resistant bacterial mutants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many bacterial and viral pathogens (or their toxins), including Pseudomonas aeruginosa exotoxin A, require processing by host pro-protein convertases such as furin to cause dis- ease. We report the development of a novel irreversible inhibitor of furin (QUB-F1) consist- ing of a diphenyl phosphonate electrophilic warhead coupled with a substrate-like peptide (RVKR), that also includes a biotin tag, to facilitate activity-based profiling/visualisation. QUB-F1 displays greater selectivity for furin, in comparison to a widely used exemplar com- pound (furin I) which has a chloromethylketone warhead coupled to RVKR, when tested against the serine trypsin-like proteases (trypsin, prostasin and matriptase), factor Xa and the cysteine protease cathepsin B. We demonstrate QUB-F1 does not prevent P. aerugi- nosa exotoxin A-induced airway epithelial cell toxicity; in contrast to furin I, despite inhibiting cell surface furin-like activity to a similar degree. This finding indicates additional proteases, which are sensitive to the more broad-spectrum furin I compound, may be involved in this process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

<p>Pseudomonas aeruginosa is a major cause of morbidity and mortality in cystic fibrosis patients. This study compares the antimicrobial susceptibility of 153 P. aeruginosa isolates from the United Kingdom (UK) (n=58), Belgium (n=44), and Germany (n=51) collected from 120 patients during routine visits over the 2006-2012 period. MICs were measured by broth microdilution. Genes encoding extended spectrum β-lactamases (ESBL), metallo-β-lactamases and carbapenemases were detected by PCR. Pulsed Field Gel Electrophoresis and Multi-Locus Sequence Typing were performed on isolates resistant to ⥠3 antibiotic classes among penicillins/cephalosporins, carbapenems, fluoroquinolones, aminoglycosides, polymyxins. Based on EUCAST/CLSI breakpoints, susceptibility was ⤠30%/⤠40% (penicillins, ceftazidime, amikacin, ciprofloxacin), 44-48%/48-63% (carbapenems), 72%/72% (tobramycin), and 92%/78% (colistin) independently of patient's age. Sixty percent of strains were multidrug resistant (MDR; European Centre for Disease prevention and Control criteria). Genes encoding ESBL (most prevalent BEL, PER, GES, VEB, CTX-M, TEM, SHV, and OXA), metallo β-lactamases (VIM, IMP, NDM), or carbapenemases (OXA-48, KPC) were not detected. The Liverpool Epidemic Strain (LES) was prevalent in UK isolates only (75% of MDR isolates). Four MDR ST958 isolates were found spread over the three countries. The other MDR clones were evidenced in ⤠3 isolates and localized in a single country. A new sequence type (ST2254) was discovered in one MDR isolate in Germany. Clonal and non-clonal isolates with different susceptibility profiles were found in 21 patients. Thus, resistance and MDR are highly prevalent in routine isolates from 3 countries, with carbapenem (meropenem), tobramycin and colistin remaining the most active drugs.</p>

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study describes further validation of a previously described Peptide-mediated magnetic separation (PMS)-Phage assay, and its application to test raw cowsâ milk for presence of viable Mycobacterium avium subsp. paratuberculosis (MAP). The inclusivity and exclusivity of the PMS-phage assay were initially assessed, before the 50% limit of detection (LOD50) was determined and compared with those of PMS-qPCR (targeting both IS900 and f57) and PMS-culture. These methods were then applied in parallel to test 146 individual milk samples and 22 bulk tank milk samples from Johneâs affected herds. Viable MAP were detected by the PMS-phage assay in 31 (21.2%) of 146 individual milk samples (mean plaque count of 228.1 PFU/50 ml, range 6-948 PFU/50 ml), and 13 (59.1%) of 22 bulk tank milks (mean plaque count of 136.83 PFU/50 ml, range 18-695 PFU/50 ml). In contrast, only 7 (9.1%) of 77 individual milks and 10 (45.4%) of 22 bulk tank milks tested PMS-qPCR positive, and 17 (11.6%) of 146 individual milks and 11 (50%) of 22 bulk tank milks tested PMS-culture positive. The mean 50% limits of detection (LOD50) of the PMS-phage, PMS-IS900 qPCR and PMS-f57 qPCR assays, determined by testing MAP-spiked milk, were 0.93, 135.63 and 297.35 MAP CFU/50 ml milk, respectively. Collectively, these results demonstrate that, in our laboratory, the PMS-phage assay is a sensitive and specific method to quickly detect the presence of viable MAP cells in milk. However, due to its complicated, multi-step nature, the method would not be a suitable MAP screening method for the dairy industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Burkholderia phage AP3 (vB_BceM_AP3) is a temperate virus of the Myoviridae and the Peduovirinae subfamily (P2likevirus genus). This phage specifically infects multidrug-resistant clinical Burkholderia cenocepacia lineage IIIA strains commonly isolated from cystic fibrosis patients. AP3 exhibits high pairwise nucleotide identity (61.7%) to Burkholderia phage KS5, specific to the same B. cenocepacia host, and has 46.7% - 49.5% identity to phages infecting other species of Burkholderia. The lysis cassette of these related phages has a similar organization (putative antiholin, putative holin, endolysin and spanins) and shows 29-98% homology between specific lysis genes, in contrast to Enterobacteria phage P2, the hallmark phage of this genus. The AP3 and KS5 lysis genes have conserved locations and high amino acid sequence similarity. The AP3 bacteriophage particles remain infective up to 5 h at pH 4-10 and are stable at 60°C for 30 min, but are sensitive to chloroform, with no remaining infective particles after 24 h of treatment. AP3 lysogeny can occur by stable genomic integration and by pseudo-lysogeny. The lysogenic bacterial mutants did not exhibit any significant changes in virulence compared to wild-type host strain when tested in the Galleria mellonella moth wax model. Moreover, AP3 treatment of larvae infected with B. cenocepacia revealed a significant increase (P &lt; 0.0001) in larvae survival in comparison to AP3-untreated infected larvae. AP3 showed robust lytic activity, as evidenced by its broad host range, the absence of increased virulence in lysogenic isolates, the lack of bacterial gene disruption conditioned by bacterial tRNA downstream integration site, and the absence of detected toxin sequences. These data suggest the AP3 phage is a promising potent agent against bacteria belonging to most common B. cenocepacia IIIA lineage strains.