88 resultados para Proximal tubules
Resumo:
Abstract The prostanoid biosynthetic enzyme cyclooxygenase-2 (Cox-2) is upregulated in several neuroendocrine tumors. The aim of the current study was to employ a neuroendocrine cell (PC12) model of Cox-2 over-expression to identify gene products that might be implicated in the oncogenic and/or inflammatory actions of this enzyme in the setting of neuroendocrine neoplasia. Expression array and real-time PCR analysis demonstrated that levels of the neuroendocrine marker chromogranin A (CGA) were 2-fold and 3.2-fold higher, respectively, in Cox-2 over-expressing cells (PCXII) vs their control (PCMT) counterparts. Immunocytochemical and immunoblotting analyses confirmed that both intracellular and secreted levels of CGA were elevated in response to Cox-2 induction. Moreover, exogenous addition of prostaglandin E2 (1uÃ?ÂM), mimicked this effect in PCMT cells, while treatment of PCXII cells with the Cox-2 selective inhibitor NS-398 (100 nM) reduced CGA expression levels, thereby confirming the biospecificity of this finding. Levels of neurone specific enolase (NSE) were similar in the two cell lines, suggesting that the effect of Cox-2 on CGA expression was specific and not due to a global enhancement of neuroendocrine marker expression/differentiation. Cox-2-dependent CGA upregulation was associated with significantly increased chromaffin granule number and intracellular and secreted levels of dopamine. CGA promoter-driven reporter gene expression studies provided evidence that prostaglandin E2-dependent upregulation required a proximal cAMP-responsive element (CRE; -71 - -64 bp). This study is the first to demonstrate that Cox-2 upregulates both CGA expression and bioactivity in a neuroendocrine cell line and has major implications for the role of this polypeptide in the pathogenesis of neuroendocrine cancers in which Cox-2 is upregulated.
Resumo:
Three-dimensional reconstruction from volumetric medical images (e.g. CT, MRI) is a well-established technology used in patient-specific modelling. However, there are many cases where only 2D (planar) images may be available, e.g. if radiation dose must be limited or if retrospective data is being used from periods when 3D data was not available. This study aims to address such cases by proposing an automated method to create 3D surface models from planar radiographs. The method consists of (i) contour extraction from the radiograph using an Active Contour (Snake) algorithm, (ii) selection of a closest matching 3D model from a library of generic models, and (iii) warping the selected generic model to improve correlation with the extracted contour.
This method proved to be fully automated, rapid and robust on a given set of radiographs. Measured mean surface distance error values were low when comparing models reconstructed from matching pairs of CT scans and planar X-rays (2.57–3.74 mm) and within ranges of similar studies. Benefits of the method are that it requires a single radiographic image to perform the surface reconstruction task and it is fully automated. Mechanical simulations of loaded bone with different levels of reconstruction accuracy showed that an error in predicted strain fields grows proportionally to the error level in geometric precision. In conclusion, models generated by the proposed technique are deemed acceptable to perform realistic patient-specific simulations when 3D data sources are unavailable.
Resumo:
The majority of cemented femoral hip replacements fail as a consequence of loosening. One design feature that may affect loosening rates is implant surface finish. To determine whether or not surface finish effects fatigue damage accumulation in a bone cement mantle, we developed an experimental model of the implanted proximal femur that allows visualisation of damage growth in the cement layer. Five matt surface and five polished surface stems were tested. Pre-load damage and damage after two million cycles was measured. Levels of pre-load (shrinkage) damage were the same for both matt and polished stems; furthermore damage for matt vs. polished stems was not significantly different after two million cycles. This was due to the large variability in damage accumulation rates. Finite element analysis showed that the stress is higher for the polished (assumed debonded) stem, and therefore we must conclude that either the magnitude of the stress increase is not enough to appreciably increase the damage accumulation rate or, alternatively, the polished stem does not debond immediately from the cement. Significantly (P = 0.05) more damage was initiated in the lateral cement compared to the medial cement for both kinds of surface finish. It was concluded that, despite the higher cement stresses with debonded stems, polished prostheses do not provoke the damage accumulation failure scenario. (C) 2003 IPEM. Published by Elsevier Ltd. All rights reserved.
Resumo:
Erythropoietin (EPO) is the main humoral stimulus of erythropoiesis. In adult mammals, the kidney releases EPO in response to hypoxic stress. Conflicting data have suggested either renal tubular or peritubular cell origins of EPO synthesis in vivo. In situ hybridization studies were performed to define further the kidney cell type(s) capable of increasing EPO gene expression during hypoxic stimulation. EPO gene expression was stimulated in mice exposed to acute hypobaric hypoxia. Kidneys from hypoxic and control normoxic mice were obtained. Six digoxigenin-labelled oligonucleotide probes complementary to EPO exon sequences were utilized for in situ hybridization for EPO messenger RNA. Positive hybridization signals were identified in some proximal tubular cells, confined to the inner third of the renal cortex of hypoxic mouse kidney.
Resumo:
Lipoxins, which are endogenously produced lipid mediators, promote the resolution of inflammation, and may inhibit fibrosis, suggesting a possible role in modulating renal disease. Here, lipoxin A4 (LXA4) attenuated TGF-ß1-induced expression of fibronectin, N-cadherin, thrombospondin, and the notch ligand jagged-1 in cultured human proximal tubular epithelial (HK-2) cells through a mechanism involving upregulation of the microRNA let-7c. Conversely, TGF-ß1 suppressed expression of let-7c. In cells pretreated with LXA4, upregulation of let-7c persisted despite subsequent stimulation with TGF-ß1. In the unilateral ureteral obstruction model of renal fibrosis, let-7c upregulation was induced by administering an LXA4 analog. Bioinformatic analysis suggested that targets of let-7c include several members of the TGF-ß1 signaling pathway, including the TGF-ß receptor type 1. Consistent with this, LXA4-induced upregulation of let-7c inhibited both the expression of TGF-ß receptor type 1 and the response to TGF-ß1. Overexpression of let-7c mimicked the antifibrotic effects of LXA4 in renal epithelia; conversely, anti-miR directed against let-7c attenuated the effects of LXA4. Finally, we observed that several let-7c target genes were upregulated in fibrotic human renal biopsies compared with controls. In conclusion, these results suggest that LXA4-mediated upregulation of let-7c suppresses TGF-ß1-induced fibrosis and that expression of let-7c targets is dysregulated in human renal fibrosis.
Resumo:
Diabetic nephropathy (DN) is a progressive fibrotic condition that may lead to end-stage renal disease and kidney failure. Transforming growth factor-ß1 and bone morphogenetic protein-7 (BMP7) have been shown to induce DN-like changes in the kidney and protect the kidney from such changes, respectively. Recent data identified insulin action at the level of the nephron as a crucial factor in the development and progression of DN. Insulin requires a family of insulin receptor substrate (IRS) proteins for its physiological effects, and many reports have highlighted the role of insulin and IRS proteins in kidney physiology and disease. Here, we observed IRS2 expression predominantly in the developing and adult kidney epithelium in mouse and human. BMP7 treatment of human kidney proximal tubule epithelial cells (HK-2 cells) increases IRS2 transcription. In addition, BMP7 treatment of HK-2 cells induces an electrophoretic shift in IRS2 migration on SDS/PAGE, and increased association with phosphatidylinositol-3-kinase, probably due to increased tyrosine/serine phosphorylation. In a cohort of DN patients with a range of chronic kidney disease severity, IRS2 mRNA levels were elevated approximately ninefold, with the majority of IRS2 staining evident in the kidney tubules in DN patients. These data show that IRS2 is expressed in the kidney epithelium and may play a role in the downstream protective events triggered by BMP7 in the kidney. The specific up-regulation of IRS2 in the kidney tubules of DN patients also indicates a novel role for IRS2 as a marker and/or mediator of human DN progression.
Resumo:
Background: There has been an explosion of interest in methods of exogenous brain stimulation that induce changes in the excitability of human cerebral cortex. The expectation is that these methods may promote recovery of function following brain injury. To assess their effects on motor output, it is typical to assess the state of corticospinal projections from primary motor cortex to muscles of the hand, via electromyographic responses to transcranial magnetic stimulation. If a range of stimulation intensities is employed, the recruitment curves (RCs) obtained can, at least for intrinsic hand muscles, be fitted by a sigmoid function.
Objective/hypothesis: To establish whether sigmoid fits provide a reliable basis upon which to characterize the input–output properties of the corticospinal pathway for muscles proximal to the hand, and to assess as an alternative the area under the (recruitment) curve (AURC).
Methods: A comparison of the reliability of these measures, using RCs obtained for muscles that are frequently the targets of rehabilitation.
Results: The AURC is an extremely reliable measure of the state of corticospinal projections to hand and forearm muscles, which has both face and concurrent validity. Construct validity is demonstrated by detection of widely distributed (across muscles) changes in corticospinal excitability induced by paired associative stimulation (PAS).
Conclusion(s): The parameters derived from sigmoid fits are unlikely to provide an adequate means to assess the effectiveness of therapeutic regimes. The AURC can be employed to characterize corticospinal projections to a range of muscles, and gauge the efficacy of longitudinal interventions in clinical rehabilitation.
T- and L-type Ca2+ currents in freshly dispersed smooth muscle cells from the human proximal urethra
Resumo:
The purpose of the present study was to characterise Ca2+ currents in smooth muscle cells isolated from biopsy samples taken from the proximal urethra of patients undergoing surgery for bladder or prostate cancer. Cells were studied at 37 degreesC using the amphotericin B perforated-patch configuration of the patch-clamp technique. Currents were recorded using Cs+-rich pipette solutions to block K+ currents. Two components of current, with electrophysiological and pharmacological properties typical of T- and L-type Ca2+ currents, were present in these cells. When steady-state inactivation curves for the L current were fitted with a Boltzmann equation, this yielded a V-1/2 of -45 +/- 5 mV. In contrast, the T current inactivated with a V-1/2 of -80 +/- 3 mV. The L currents were reduced in a concentration-dependent manner by nifedipine (ED50 = 159 +/- 54 nm) and Ni2+ (ED50 = 65 +/- 16 muM) but were enhanced when external Ca2+ was substituted with Ba2+. The T current was little affected by TTX, reduction in external Na+, application of nifedipine at concentrations below 300 nm or substitution of external Ca2+ with Ba2+, but was reduced by Ni2+ with an ED50 of 6 +/- 1 mum. When cells were stepped from -100 to -30 mV in Ca2+-free conditions, small inward currents could be detected. These were enhanced 40-fold in divalent-cation-free solution and blocked in a concentration-dependent manner by Mg2+ with an ED50 of 32 +/- 16 mum. These data support the idea that human urethral myocytes possess currents with electrophysiological and pharmacological properties typical of T- and L-type Ca2+ currents.
Resumo:
Endothelial dysfunction is a central pathomechanism in diabetes-associated complications. We hypothesized a pathogenic role in this dysfunction of cathepsin S (Cat-S), a cysteine protease that degrades elastic fibers and activates the protease-activated receptor-2 (PAR2) on endothelial cells. We found that injection of mice with recombinant Cat-S induced albuminuria and glomerular endothelial cell injury in a PAR2-dependent manner. In vivo microscopy confirmed a role for intrinsic Cat-S/PAR2 in ischemia-induced microvascular permeability. In vitro transcriptome analysis and experiments using siRNA or specific Cat-S and PAR2 antagonists revealed that Cat-S specifically impaired the integrity and barrier function of glomerular endothelial cells selectively through PAR2. In human and mouse type 2 diabetic nephropathy, only CD68(+) intrarenal monocytes expressed Cat-S mRNA, whereas Cat-S protein was present along endothelial cells and inside proximal tubular epithelial cells also. In contrast, the cysteine protease inhibitor cystatin C was expressed only in tubules. Delayed treatment of type 2 diabetic db/db mice with Cat-S or PAR2 inhibitors attenuated albuminuria and glomerulosclerosis (indicators of diabetic nephropathy) and attenuated albumin leakage into the retina and other structural markers of diabetic retinopathy. These data identify Cat-S as a monocyte/macrophage-derived circulating PAR2 agonist and mediator of endothelial dysfunction-related microvascular diabetes complications. Thus, Cat-S or PAR2 inhibition might be a novel strategy to prevent microvascular disease in diabetes and other diseases.
Resumo:
We have carried out extensive density functional theory (DFT) calculations for possible redox states of the active center in Fe-only hydrogenases. The active center is modeled by [(H(CH(3))S)(CO)(CN(-))Fe(p)(mu-DTN)(mu-CO)Fe(d)(CO)(CN(-))(L)](z) (z is the net charge in the complex; Fe(p)= the proximal Fe, Fe(d) = the distal Fe, DTN = (-SCH(2)NHCH(2)S-), L is the ligand that bonds with the Fed at the trans position to the bridging CO). Structures of possible redox states are optimized, and CO stretching frequencies are calculated. By a detailed comparison of all the calculated structures and the vibrational frequencies with the available experimental data, we find that (i) the fully oxidized, inactive state is an Fe(II)-Fe(II) state with a hydroxyl (OH(-)) group bonded at the Fe(d), (ii) the oxidized, active state is an Fe(II)-Fe(l) complex which is consistent with the assignment of Cao and Hall (J. Am. Chem. Soc. 2001, 123, 3734), and (iii) the fully reduced state is a mixture with the major component being a protonated Fe(l)-Fe(l) complex and the other component being its self-arranged form, Fe(II)-Fe(II) hydride, Our calculations also show that the exogenous CO can strongly bond with the Fe(II)-Fe(l) species, but cannot bond with the Fe(l)-Fe(l) complex. This result is consistent with experiments that CO tends to inhibit the oxidized, active state, but not the fully reduced state. The electronic structures of all the redox states have been analyzed. It is found that a frontier orbital which is a mixing state between the e(g) of Fe and the 2pi of the bridging CO plays a key role concerning the reactivity of Fe-only hydrogenases: (1) it is unoccupied in the fully oxidized, inactive state, half-occupied in the oxidized, active state, and fully occupied in the fully reduced state; (ii) the e(g)-2pi orbital is a bonding state, and this is the key reason for stability of the low oxidation states, such as Fe(l)-Fe(l) complexes; and (iii) in the e(g)-2pi orbital more charge accumulates between the bridging CO and the Fe(d) than between the bridging CO and the Fe(p), and the occupation increase in this orbital will enhance the bonding between the bridging CO and the Fe(d), leading to the bridging-CO shift toward the Fe(d).