2 resultados para Protein P-1
Resumo:
Diabetes is the leading cause of end stage renal disease. Despite evidence for a substantial heritability of diabetic kidney disease, efforts to identify genetic susceptibility variants have had limited success. We extended previous efforts in three dimensions, examining a more comprehensive set of genetic variants in larger numbers of subjects with type 1 diabetes characterized for a wider range of cross-sectional diabetic kidney disease phenotypes. In 2,843 subjects, we estimated that the heritability of diabetic kidney disease was 35% ( p=6x10-3 ). Genome-wide association analysis and replication in 12,540 individuals identified no single variants reaching stringent levels of significance and, despite excellent power, provided little independent confirmation of previously published associated variants. Whole exome sequencing in 997 subjects failed to identify any large-effect coding alleles of lower frequency influencing the risk of diabetic kidney disease. However, sets of alleles increasing body mass index ( p=2.2×10-5) and the risk of type 2 diabetes (p=6.1x10-4 ) were associated with the risk of diabetic kidney disease. We also found genome-wide genetic correlation between diabetic kidney disease and failure at smoking cessation ( p=1.1×10-4 ). Pathway analysis implicated ascorbate and aldarate metabolism ( p=9×10-6), and pentose and glucuronate interconversions ( p=3×10-6) in pathogenesis of diabetic kidney disease. These data provide further evidence for the role of genetic factors influencing diabetic kidney disease in those with type 1 diabetes and highlight some key pathways that may be responsible. Altogether these results reveal important biology behind the major cause of kidney disease.
Resumo:
B-type natriuretic peptide (BNP) is a prognostic and diagnostic marker for heart failure (HF). An anti-inflammatory, cardio-protective role for BNP was proposed. In cardiovascular diseases including pressure overload-induced HF, perivascular inflammation and cardiac fibrosis are, in part, mediated by monocyte chemoattractant protein (MCP)1-driven monocyte migration. We aimed to determine the role of BNP in monocyte motility to MCP1. A functional BNP receptor, natriuretic peptide receptor-A (NPRA) was identified in human monocytes. BNP treatment inhibited MCP1-induced THP1 (monocytic leukemia cells) and primary monocyte chemotaxis (70 and 50 %, respectively). BNP did not interfere with MCP1 receptor expression or with calcium. BNP inhibited activation of the cytoskeletal protein RhoA in MCP1-stimulated THP1 (70 %). Finally, BNP failed to inhibit MCP1-directed motility of monocytes from patients with hypertension (n = 10) and HF (n = 6) suggesting attenuation of this anti-inflammatory mechanism in chronic heart disease. We provide novel evidence for a direct role of BNP/NPRA in opposing human monocyte migration and support a role for BNP as a cardio-protective hormone up-regulated as part of an adaptive compensatory response to combat excess inflammation.