3 resultados para Protein Crystallization
Resumo:
By molecular dynamics (MD) simulations we study the crystallization process in a model system whose particles interact by a spherical pair potential with a narrow and deep attractive well adjacent to a hard repulsive core. The phase diagram of the model displays a solid-fluid equilibrium, with a metastable fluid-fluid separation. Our computations are restricted to fairly small systems (from 2592 to 10368 particles) and cover long simulation times, with constant energy trajectories extending up to 76x10(6) MD steps. By progressively reducing the system temperature below the solid-fluid line, we first observe the metastable fluid-fluid separation, occurring readily and almost reversibly upon crossing the corresponding line in the phase diagram. The nucleation of the crystal phase takes place when the system is in the two-fluid metastable region. Analysis of the temperature dependence of the nucleation time allows us to estimate directly the nucleation free energy barrier. The results are compared with the predictions of classical nucleation theory. The critical nucleus is identified, and its structure is found to be predominantly fcc. Following nucleation, the solid phase grows steadily across the system, incorporating a large number of localized and extended defects. We discuss the relaxation processes taking place both during and after the crystallization stage. The relevance of our simulation for the kinetics of protein crystallization under normal experimental conditions is discussed. (C) 2002 American Institute of Physics.
Resumo:
Acutohaemolysin, a phospholipase A2 (PLA2) from the venom of the snake Agkistrodon acutus, has been isolated and purified to homogeneity by anion-exchange chromatography on a DEAE-Sepharose column followed by cation-exchange chromatography on a CM-Sepharose column. It is an alkaline protein with an isoelectric point of 10.5 and is comprised of a single polypeptide chain of 13 938 Da. Its N-terminal amino-acid sequence shows very high similarity to Lys49-type PLA2 proteins from other snake venoms. Although its PLA2 enzymatic activity is very low, acutohaemolysin has a strong indirect haemolytic activity and anticoagulant activity. Acutohaemolysin crystals with a diffraction limit of 1.60 Å were obtained by the hanging-drop vapour-diffusion method. The crystals belong to the space group C2, with unit-cell parameters a = 45.30, b = 59.55, c = 46.13 Å, [beta] = 117.69°. The asymmetric unit contains one molecule
Resumo:
Crystallization of integral membrane proteins is a challenging field and much effort has been invested in optimizing the overexpression and purification steps needed to obtain milligram amounts of pure, stable, monodisperse protein sample for crystallography studies. Our current work involves the structural and functional characterization of the Escherichia coli multidrug resistance transporter MdtM, a member of the major facilitator superfamily (MFS). Here we present a protocol for isolation of MdtM to increase yields of recombinant protein to the milligram quantities necessary for pursuit of structural studies using X-ray crystallography. Purification of MdtM was enhanced by introduction of an elongated His-tag, followed by identification and subsequent removal of chaperonin contamination. For crystallization trials of MdtM, detergent screening using size exclusion chromatography determined that decylmaltoside (DM) was the shortest-chain detergent that maintained the protein in a stable, monodispersed state. Crystallization trials of MdtM performed using the hanging-drop diffusion method with commercially available crystallization screens yielded 3D protein crystals under several different conditions. We contend that the purification protocol described here may be employed for production of high-quality protein of other multidrug efflux members of the MFS, a ubiquitous, physiologically and clinically important class of membrane transporters.