21 resultados para Propagation effects
Resumo:
We address the propagation of a single photon pulse with two polarization components, i.e., a polarization qubit, in an inhomogeneously broadened "phaseonium" \Lambda-type three-level medium. We combine some of the non-trivial propagation effects characteristic for this kind of coherently prepared systems and the controlled reversible inhomogeneous broadening technique to propose several quantum information processing applications, such as a protocol for polarization qubit filtering and sieving as well as a tunable polarization beam splitter. Moreover, we show that, by imposing a spatial variation of the atomic coherence phase, an effcient quantum memory for the incident polarization qubit can be also implemented in \Lambda-type three-level systems.
Resumo:
A scheme employing an external axial magnetic field is proposed to diagnose the intrinsic divergence of laser-generated fast electron beams, and this is studied numerically with hybrid simulations. The maximum beam radius of fast electrons increases with the initial divergence and decreases with the amplitude of the axial magnetic field. It is indicated that the intrinsic divergence of fast electrons can be inferred from measurements of the beam radius at different depth under the axial field. The proposed scheme here may be useful for future fast ignition experiments and in other applications of laser-generated fast electron beams. (C) 2011 American Institute of Physics. [doi:10.1063/1.3630925]
Resumo:
By extending a prior model [A. R. Bell, J.R. Davies, S. M. Guerin, Phys. Rev. E 58, 2471 (1998)], the magnetic field generated during the transport of a fast electron beam driven by an ultraintense laser in a solid target is derived analytically and applied to estimate the effect of such field on fast electron propagation through a buried high-Z layer in a lower-Z target. It is found that the effect gets weaker with the increase of the depth of the buried layer, the divergence of the fast electrons, and the laser intensity, indicating that magnetic field effects on the fast electron divergence as measured from K-a X-ray emission may need to be considered for moderate laser intensities. On the basis of the calculations, some considerations are made on how one can mitigate the effect of the magnetic field generated at the interface.
Resumo:
The nonlinear propagation of finite amplitude ion acoustic solitary waves in a plasma consisting of adiabatic warm ions, nonisothermal electrons, and a weakly relativistic electron beam is studied via a two-fluid model. A multiple scales technique is employed to investigate the nonlinear regime. The existence of the electron beam gives rise to four linear ion acoustic modes, which propagate at different phase speeds. The numerical analysis shows that the propagation speed of two of these modes may become complex-valued (i.e., waves cannot occur) under conditions which depend on values of the beam-to-background-electron density ratio , the ion-to-free-electron temperature ratio , and the electron beam velocity v0; the remaining two modes remain real in all cases. The basic set of fluid equations are reduced to a Schamel-type equation and a linear inhomogeneous equation for the first and second-order potential perturbations, respectively. Stationary solutions of the coupled equations are derived using a renormalization method. Higher-order nonlinearity is thus shown to modify the solitary wave amplitude and may also deform its shape, even possibly transforming a simple pulse into a W-type curve for one of the modes. The dependence of the excitation amplitude and of the higher-order nonlinearity potential correction on the parameters , , and v0 is numerically investigated.
Resumo:
Polymethyl methacrylate (PMMA) bone cement–multiwalled carbon nanotube (MWCNT) nanocomposites with a weight loading of 0.1% were prepared using 3 different methods of MWCNT incorporation. The mechanical and thermal properties of the resultant nanocomposite cements were characterised in accordance with the international standard for acrylic resin cements. The mechanical properties of the resultant nanocomposite cements were influenced by the type of MWCNT and method of incorporation used. The exothermic polymerisation reaction for the PMMA bone cement was significantly reduced when thermally conductive functionalised MWCNTs were added. This reduction in exotherm translated in a decrease in thermal necrosis index value of the respective nanocomposite cements, which potentially could reduce the hyperthermia experienced in vivo. The morphology and degree of dispersion of the MWCNTs in the PMMA matrix at different scales were analysed using scanning electron microscopy. Improvements in mechanical properties were attributed to the MWCNTs arresting/retarding crack propagation through the cement by providing a bridging effect into the wake of the crack, normal to the direction of crack growth. MWCNT agglomerations were evident within the cement microstructure, the degree of these agglomerations was dependent on the method used to incorporate the MWCNTs into the cement.
Resumo:
A comprehensive experimental study was performed to identify and discriminate mechanisms contributing to passive intermodulation (PIM) in microstrip transmission lines. The effects of strip length and width, and substrate materials on PIM performance of printed lines were investigated in the GSM900, DCS1800 and UMTS frequency bands. The major features of the experiment design, sample preparation and test setup are discussed in detail. The measurement results have demonstrated that the PIM level cumulatively grows on the longer microstrip lines and decreases on wider strips and, thus, indicated that the distributed resistive nonlinearity of the printed traces represents the dominant mechanism of intermodulation generation in the printed lines on PTFE-based substrates. © 2009 The Institution of Engineering and Technology.
Resumo:
Theoretical and numerical investigations are carried out for the amplitude modulation of dust-ion acoustic waves (DIAW) propagating in an unmagnetized weakly coupled collisionless fully ionized plasma consisting of isothermal electrons, warm ions and charged dust grains. Modulation oblique (by an angle theta) to the carrier wave propagation direction is considered. The stability analysis, based on a nonlinear Schrodinger-type equation (NLSE), exhibits a sensitivity of the instability region to the modulation angle theta, the dust concentration and the ion temperature. It is found that the ion temperature may strongly modify the wave's stability profile, in qualitative agreement with previous results, obtained for an electron-ion plasma. The effect of the ion temperature on the formation of DIAW envelope excitations (envelope solitons) is also discussed.
Resumo:
An experimental investigation of the effect of conductor-to-substrate interface on distributed passive intermodulation (PIM) generation in printed microstrip lines has been undertaken using the custom-designed microwave laminates with removed surface bonding layers and with the commercial adhesion promotion applied to the conductor underside. The study of long-term stability of PIM performance of the printed circuits is reported for the first time. The comprehensive measurement results, observations of the selfimprovement of the PIM performance and the effect of panel bending on PIM generation in printed boards with different finishing are presented. A consistent physical interpretation of the observed phenomena is proposed. The results of this study provide new important considerations for the design and characterisation of low-PIM printed circuits.
Resumo:
Multipulse irradiation with 100 ps pulses of stripe Germanium targets is shown to enhance by up to several orders-of-magnitude the output of Ne-like Ge lasing on the J = 0-1 line at 196 Angstrom compared to single pulse pumping. Various pre-pulse and multipulse configurations have been experimentally investigated for irradiances of approximate to 4 x 10(13) W/cm(2) with a 1.06 mu m wavelength pumping laser. The ionisation balance measured by a KeV crystal spectrometer (KAP crystal) has been found to not affect the X-ray laser output. Good agreement between the experimental results and a fluid code incorporating atomic physics, gain and X-ray beam ray tracing is obtained. The code results show that the enhanced X-ray laser output is produced by multipulse irradiation reducing the electron density gradients in the gain region and simultaneously increasing the gain region spatial size. These changes reduce the effect of refraction on the X-ray laser beam propagation.
Resumo:
The linear and nonlinear properties of large-amplitude electron-acoustic waves are investigated in a magnetized plasma comprising two distinct electron populations (hot and cold) and immobile ions. The hot electrons are assumed to be in a non-Maxwellian state, characterized by an excess of superthermal particles, here modeled by a kappa-type long-tailed distribution function. Waves are assumed to propagate obliquely to the ambient magnetic field. Two types of electrostatic modes are shown to exist in the linear regime, and their properties are briefly analyzed. A nonlinear pseudopotential-type analysis reveals the existence of large-amplitude electrostatic solitary waves and allows for an investigation of their propagation characteristics and existence domain, in terms of the soliton speed (Mach number). The effects of the key plasma configuration parameters, namely the superthermality index and the cold electron density, on the soliton characteristics and existence domain, are studied. The role of obliqueness and magnetic field is discussed.