13 resultados para Probabilistic Networks
Resumo:
Semi-qualitative probabilistic networks (SQPNs) merge two important graphical model formalisms: Bayesian networks and qualitative probabilistic networks. They provide a very general modeling framework by allowing the combination of numeric and qualitative assessments over a discrete domain, and can be compactly encoded by exploiting the same factorization of joint probability distributions that are behind the Bayesian networks. This paper explores the computational complexity of semi-qualitative probabilistic networks, and takes the polytree-shaped networks as its main target. We show that the inference problem is coNP-Complete for binary polytrees with multiple observed nodes. We also show that inferences can be performed in linear time if there is a single observed node, which is a relevant practical case. Because our proof is constructive, we obtain an efficient linear time algorithm for SQPNs under such assumptions. To the best of our knowledge, this is the first exact polynomial-time algorithm for SQPNs. Together these results provide a clear picture of the inferential complexity in polytree-shaped SQPNs.
Resumo:
This paper explores the application of semi-qualitative probabilistic networks (SQPNs) that combine numeric and qualitative information to computer vision problems. Our version of SQPN allows qualitative influences and imprecise probability measures using intervals. We describe an Imprecise Dirichlet model for parameter learning and an iterative algorithm for evaluating posterior probabilities, maximum a posteriori and most probable explanations. Experiments on facial expression recognition and image segmentation problems are performed using real data.
Resumo:
This paper explores semi-qualitative probabilistic networks (SQPNs) that combine numeric and qualitative information. We first show that exact inferences with SQPNs are NPPP-Complete. We then show that existing qualitative relations in SQPNs (plus probabilistic logic and imprecise assessments) can be dealt effectively through multilinear programming. We then discuss learning: we consider a maximum likelihood method that generates point estimates given a SQPN and empirical data, and we describe a Bayesian-minded method that employs the Imprecise Dirichlet Model to generate set-valued estimates.
Resumo:
Credal networks are graph-based statistical models whose parameters take values in a set, instead of being sharply specified as in traditional statistical models (e.g., Bayesian networks). The computational complexity of inferences on such models depends on the irrelevance/independence concept adopted. In this paper, we study inferential complexity under the concepts of epistemic irrelevance and strong independence. We show that inferences under strong independence are NP-hard even in trees with binary variables except for a single ternary one. We prove that under epistemic irrelevance the polynomial-time complexity of inferences in credal trees is not likely to extend to more general models (e.g., singly connected topologies). These results clearly distinguish networks that admit efficient inferences and those where inferences are most likely hard, and settle several open questions regarding their computational complexity. We show that these results remain valid even if we disallow the use of zero probabilities. We also show that the computation of bounds on the probability of the future state in a hidden Markov model is the same whether we assume epistemic irrelevance or strong independence, and we prove an analogous result for inference in Naive Bayes structures. These inferential equivalences are important for practitioners, as hidden Markov models and Naive Bayes networks are used in real applications of imprecise probability.
Resumo:
This paper investigates a representation language with flexibility inspired by probabilistic logic and compactness inspired by relational Bayesian networks. The goal is to handle propositional and first-order constructs together with precise, imprecise, indeterminate and qualitative probabilistic assessments. The paper shows how this can be achieved through the theory of credal networks. New exact and approximate inference algorithms based on multilinear programming and iterated/loopy propagation of interval probabilities are presented; their superior performance, compared to existing ones, is shown empirically.
Resumo:
Face recognition with unknown, partial distortion and occlusion is a practical problem, and has a wide range of applications, including security and multimedia information retrieval. The authors present a new approach to face recognition subject to unknown, partial distortion and occlusion. The new approach is based on a probabilistic decision-based neural network, enhanced by a statistical method called the posterior union model (PUM). PUM is an approach for ignoring severely mismatched local features and focusing the recognition mainly on the reliable local features. It thereby improves the robustness while assuming no prior information about the corruption. We call the new approach the posterior union decision-based neural network (PUDBNN). The new PUDBNN model has been evaluated on three face image databases (XM2VTS, AT&T and AR) using testing images subjected to various types of simulated and realistic partial distortion and occlusion. The new system has been compared to other approaches and has demonstrated improved performance.
Resumo:
This work presents two new score functions based on the Bayesian Dirichlet equivalent uniform (BDeu) score for learning Bayesian network structures. They consider the sensitivity of BDeu to varying parameters of the Dirichlet prior. The scores take on the most adversary and the most beneficial priors among those within a contamination set around the symmetric one. We build these scores in such way that they are decomposable and can be computed efficiently. Because of that, they can be integrated into any state-of-the-art structure learning method that explores the space of directed acyclic graphs and allows decomposable scores. Empirical results suggest that our scores outperform the standard BDeu score in terms of the likelihood of unseen data and in terms of edge discovery with respect to the true network, at least when the training sample size is small. We discuss the relation between these new scores and the accuracy of inferred models. Moreover, our new criteria can be used to identify the amount of data after which learning is saturated, that is, additional data are of little help to improve the resulting model.
Resumo:
Credal networks relax the precise probability requirement of Bayesian networks, enabling a richer representation of uncertainty in the form of closed convex sets of probability measures. The increase in expressiveness comes at the expense of higher computational costs. In this paper, we present a new variable elimination algorithm for exactly computing posterior inferences in extensively specified credal networks, which is empirically shown to outperform a state-of-the-art algorithm. The algorithm is then turned into a provably good approximation scheme, that is, a procedure that for any input is guaranteed to return a solution not worse than the optimum by a given factor. Remarkably, we show that when the networks have bounded treewidth and bounded number of states per variable the approximation algorithm runs in time polynomial in the input size and in the inverse of the error factor, thus being the first known fully polynomial-time approximation scheme for inference in credal networks.
Resumo:
This paper investigates probabilistic logics endowed with independence relations. We review propositional probabilistic languages without and with independence. We then consider graph-theoretic representations for propositional probabilistic logic with independence; complexity is analyzed, algorithms are derived, and examples are discussed. Finally, we examine a restricted first-order probabilistic logic that generalizes relational Bayesian networks.
Resumo:
Credal nets generalize Bayesian nets by relaxing the requirement of precision of probabilities. Credal nets are considerably more expressive than Bayesian nets, but this makes belief updating NP-hard even on polytrees. We develop a new efficient algorithm for approximate belief updating in credal nets. The algorithm is based on an important representation result we prove for general credal nets: that any credal net can be equivalently reformulated as a credal net with binary variables; moreover, the transformation, which is considerably more complex than in the Bayesian case, can be implemented in polynomial time. The equivalent binary credal net is updated by L2U, a loopy approximate algorithm for binary credal nets. Thus, we generalize L2U to non-binary credal nets, obtaining an accurate and scalable algorithm for the general case, which is approximate only because of its loopy nature. The accuracy of the inferences is evaluated by empirical tests.
Resumo:
Artificial neural network (ANN) methods are used to predict forest characteristics. The data source is the Southeast Alaska (SEAK) Grid Inventory, a ground survey compiled by the USDA Forest Service at several thousand sites. The main objective of this article is to predict characteristics at unsurveyed locations between grid sites. A secondary objective is to evaluate the relative performance of different ANNs. Data from the grid sites are used to train six ANNs: multilayer perceptron, fuzzy ARTMAP, probabilistic, generalized regression, radial basis function, and learning vector quantization. A classification and regression tree method is used for comparison. Topographic variables are used to construct models: latitude and longitude coordinates, elevation, slope, and aspect. The models classify three forest characteristics: crown closure, species land cover, and tree size/structure. Models are constructed using n-fold cross-validation. Predictive accuracy is calculated using a method that accounts for the influence of misclassification as well as measuring correct classifications. The probabilistic and generalized regression networks are found to be the most accurate. The predictions of the ANN models are compared with a classification of the Tongass national forest in southeast Alaska based on the interpretation of satellite imagery and are found to be of similar accuracy.
Resumo:
Learning Bayesian networks with bounded tree-width has attracted much attention recently, because low tree-width allows exact inference to be performed efficiently. Some existing methods \cite{korhonen2exact, nie2014advances} tackle the problem by using $k$-trees to learn the optimal Bayesian network with tree-width up to $k$. Finding the best $k$-tree, however, is computationally intractable. In this paper, we propose a sampling method to efficiently find representative $k$-trees by introducing an informative score function to characterize the quality of a $k$-tree. To further improve the quality of the $k$-trees, we propose a probabilistic hill climbing approach that locally refines the sampled $k$-trees. The proposed algorithm can efficiently learn a quality Bayesian network with tree-width at most $k$. Experimental results demonstrate that our approach is more computationally efficient than the exact methods with comparable accuracy, and outperforms most existing approximate methods.