190 resultados para Primary mutation
Resumo:
Radiotherapy is an important treatment for patients suffering from high-grade malignant gliomas. Non-targeted (bystander) effects may influence these cells' response to radiation and the investigation of these effects may therefore provide new insights into mechanisms of radiosensitivity and responses to radiotherapy as well as define new targets for therapeutic approaches. Normal primary human astrocytes (NHA) and T98G glioma cells were irradiated with helium ions using the Gray Cancer Institute microbeam facility targeting individual cells. Irradiated NHA and T98G glioma cells generated signals that induced gammaH2AX foci in neighbouring non-targeted bystander cells up to 48 h after irradiation. gammaH2AX bystander foci were also observed in co-cultures targeting either NHA or T98G cells and in medium transfer experiments. Dimethyl sulphoxide, Filipin and anti-transforming growth factor (TGF)-beta 1 could suppress gammaH2AX foci in bystander cells, confirming that reactive oxygen species (ROS) and membrane-mediated signals are involved in the bystander signalling pathways. Also, TGF-beta 1 induced gammaH2AX in an ROS-dependent manner similar to bystander foci. ROS and membrane signalling-dependent differences in bystander foci induction between T98G glioma cells and normal human astrocytes have been observed. Inhibition of ataxia telangiectasia mutated (ATM) protein and DNA-PK could not suppress the induction of bystander gammaH2AX foci whereas the mutation of ATM- and rad3-related (ATR) abrogated bystander foci induction. Furthermore, ATR-dependent bystander foci induction was restricted to S-phase cells. These observations may provide additional therapeutic targets for the exploitation of the bystander effect.
Resumo:
Evidence that activating mutations of the KRAS oncogene abolish the response to anti-epidermal growth factor receptor therapy has revolutionized the treatment of advanced colorectal cancer. This has resulted in the urgent demand for KRAS mutation testing in the clinical setting to aid choice of therapy. The Am of this study was to evaluate six different KRAS mutation detection methodologies on two series of primary colorectal cancer samples. Two series of 80 frozen and 74 formalin-fixed paraffin-embedded tissue samples were sourced and DNA was extracted at a central site before distribution to seven different testing sites. KRAS mutations in codons 12 and 13 were assessed by using single strand conformation polymorphism analysis, pyrosequencing, high resolution melting analysis, dideoxy sequencing, or the commercially available TIB Molbiol (Berlin, Germany) or DxS Diagnostic innovations (Manchester, UK) kits. in frozen tissue samples, concordance in KRAS status (defined as consensus in at least five assays) was observed in 66/80 (83%) cases. In par-affin tissue, concordance was 46/74 (63%) if all assays were considered or 71/74 (96%) using the five best performing assays. These results demonstrate that a variety of detection methodologies are suitable and provide comparable results for KRAS mutation analysis of clinical samples. (J Mol Diagn 2009, 11:543-552; DOI: 10.2353/jmoldx.2009.090057)
Resumo:
Acute myeloid leukemia (AML) may follow a JAK2-positive myeloproliferative neoplasm (MPN), although the mechanisms of disease evolution, often involving loss of mutant JAK2, remain obscure. We studied 16 patients with JAK2-mutant (7 of 16) or JAK2 wild-type (9 of 16) AML after a JAK2-mutant MPN. Primary myelofibrosis or myelofibrotic transformation preceded all 7 JAK2-mutant but only 1 of 9 JAK2 wild-type AMLs (P = .001), implying that JAK2-mutant AML is preceded by mutation(s) that give rise to a "myelofibrosis" phenotype. Loss of the JAK2 mutation by mitotic recombination, gene conversion, or deletion was excluded in all wild-type AMLs. A search for additional mutations identified alterations of RUNX1, WT1, TP53, CBL, NRAS, and TET2, without significant differences between JAK2-mutant and wild-type leukemias. In 4 patients, mutations in TP53, CBL, or TET2 were present in JAK2 wild-type leukemic blasts but absent from the JAK2-mutant MPN. By contrast in a chronic-phase patient, clones harboring mutations in JAK2 or MPL represented the progeny of a shared TET2-mutant ancestral clone. These results indicate that different pathogenetic mechanisms underlie transformation to JAK2 wild-type and JAK2-mutant AML, show that TET2 mutations may be present in a clone distinct from that harboring a JAK2 mutation, and emphasize the clonal heterogeneity of the MPNs.
Resumo:
Background:
Increasing the activity of defective cystic fibrosis transmembrane conductance regulator (CFTR) protein is a potential treatment for cystic fibrosis.
Methods:
We conducted a randomized, double-blind, placebo-controlled trial to evaluate ivacaftor (VX-770), a CFTR potentiator, in subjects 12 years of age or older with cystic fibrosis and at least one G551D-CFTR mutation. Subjects were randomly assigned to receive 150 mg of ivacaftor every 12 hours (84 subjects, of whom 83 received at least one dose) or placebo (83, of whom 78 received at least one dose) for 48 weeks. The primary end point was the estimated mean change from baseline through week 24 in the percent of predicted forced expiratory volume in 1 second (FEV1).
Results:
The change from baseline through week 24 in the percent of predicted FEV1 was greater by 10.6 percentage points in the ivacaftor group than in the placebo group (P < 0.001). Effects on pulmonary function were noted by 2 weeks, and a significant treatment effect was maintained through week 48. Subjects receiving ivacaftor were 55% less likely to have a pulmonary exacerbation than were patients receiving placebo, through week 48 (P < 0.001). In addition, through week 48, subjects in the ivacaftor group scored 8.6 points higher than did subjects in the placebo group on the respiratory-symptoms domain of the Cystic Fibrosis Questionnaire-revised instrument (a 100-point scale, with higher numbers indicating a lower effect of symptoms on the patient's quality of life) (P < 0.001). By 48 weeks, patients treated with ivacaftor had gained, on average, 2.7 kg more weight than had patients receiving placebo (P < 0.001). The change from baseline through week 48 in the concentration of sweat chloride, a measure of CFTR activity, with ivacaftor as compared with placebo was -48.1 mmol per liter (P < 0.001). The incidence of adverse events was similar with ivacaftor and placebo, with a lower proportion of serious adverse events with ivacaftor than with placebo (24% vs. 42%).
Conclusions:
Ivacaftor was associated with improvements in lung function at 2 weeks that were sustained through 48 weeks. Substantial improvements were also observed in the risk of pulmonary exacerbations, patient-reported respiratory symptoms, weight, and concentration of sweat chloride.
Resumo:
Congenital Erythrocytosis (CE), or congenital polycythemia, represents a rare and heterogeneous clinical entity. It is caused by deregulated red blood cell production where erythrocyte overproduction results in elevated hemoglobin and hematocrit levels. Primary congenital familial erythrocytosis is associated with low erythropoietin (Epo) levels and results from mutations in the Epo receptor gene (EPOR). Secondary congenital erythrocytosis arises from conditions causing tissue hypoxia and results in increased Epo production. These include hemoglobin variants with increased affinity for oxygen (HBB, HBA mutations), decreased production of 2,3-bisphosphoglycerate due to BPGM mutations, or mutations in the genes involved in the hypoxia sensing pathway (VHL, EPAS1 and EGLN1). Depending on the affected gene, CE can be inherited either in an autosomal dominant or recessive mode, with sporadic cases arising de novo. Despite recent important discoveries in the molecular pathogenesis of CE, the molecular causes remain to be identified in about 70% of the patients. With the objective of collecting all the published and unpublished cases of CE the COST action MPN&MPNr-Euronet developed a comprehensive internet-based database focusing on the registration of clinical history, hematological, biochemical and molecular data (http://www.erythrocytosis.org/). In addition, unreported mutations are also curated in the corresponding Leiden Open Variation Database (LOVD). This article is protected by copyright. All rights reserved.
Resumo:
Purpose:The aim of this study was to determine whether mutations in mitochondrial DNA play a role in high-pressure primary open-angle glaucoma (OMIM 137760) by analyzing new data from massively parallel sequencing of mitochondrial DNA.
Methods:Glaucoma patients with high-tension primary open-angle glaucoma and ethnically matched and age-matched control subjects without glaucoma were recruited. The entire human mitochondrial genome was amplified in two overlapping fragments by long-range polymerase chain reaction and used as a template for massively parallel sequencing on an Ion Torrent Personal Genome Machine. All variants were confirmed by conventional Sanger sequencing.
Results:Whole-mitochondrial genome sequencing was performed in 32 patients with primary open-angle glaucoma from India (n = 16) and Ireland (n = 16). In 16 of the 32 patients with primary open-angle glaucoma (50% of cases), there were 22 mitochondrial DNA mutations consisting of 7 novel mutations and 8 previously reported disease-associated sequence variants. Eight of 22 (36.4%) of the mitochondrial DNA mutations were in complex I mitochondrial genes.
Conclusion:Massively parallel sequencing using the Ion Torrent Personal Genome Machine with confirmation by Sanger sequencing detected a pathogenic mitochondrial DNA mutation in 50% of the primary open-angle glaucoma cohort. Our findings support the emerging concept that mitochondrial dysfunction results in the development of glaucoma and, more specifically, that complex I defects play a significant role in primary open-angle glaucoma pathogenesis.
Resumo:
Background: Ataluren was developed to restore functional protein production in genetic disorders caused by nonsense mutations, which are the cause of cystic fibrosis in 10% of patients. This trial was designed to assess the efficacy and safety of ataluren in patients with nonsense-mutation cystic fibrosis.
Methods: This randomised, double-blind, placebo-controlled, phase 3 study enrolled patients from 36 sites in 11 countries in North America and Europe. Eligible patients with nonsense-mutation cystic fibrosis (aged ≥6 years; abnormal nasal potential difference; sweat chloride >40 mmol/L; forced expiratory volume in 1 s [FEV1] ≥40% and ≤90%) were randomly assigned by interactive response technology to receive oral ataluren (10 mg/kg in morning, 10 mg/kg midday, and 20 mg/kg in evening) or matching placebo for 48 weeks. Randomisation used a block size of four, stratified by age, chronic inhaled antibiotic use, and percent-predicted FEV1. The primary endpoint was relative change in percent-predicted FEV1 from baseline to week 48, analysed in all patients with a post-baseline spirometry measurement. This study is registered with ClinicalTrials.gov, number NCT00803205.
Findings: Between Sept 8, 2009, and Nov 30, 2010, 238 patients were randomly assigned, of whom 116 in each treatment group had a valid post-baseline spirometry measurement. Relative change from baseline in percent-predicted FEV1 did not differ significantly between ataluren and placebo at week 48 (-2·5% vs -5·5%; difference 3·0% [95% CI -0·8 to 6·3]; p=0·12). The number of pulmonary exacerbations did not differ significantly between treatment groups (rate ratio 0·77 [95% CI 0·57-1·05]; p=0·0992). However, post-hoc analysis of the subgroup of patients not using chronic inhaled tobramycin showed a 5·7% difference (95% CI 1·5-10·1) in relative change from baseline in percent-predicted FEV1 between the ataluren and placebo groups at week 48 (-0·7% [-4·0 to 2·1] vs -6·4% [-9·8 to -3·7]; nominal p=0·0082), and fewer pulmonary exacerbations in the ataluern group (1·42 events [0·9-1·9] vs 2·18 events [1·6-2·7]; rate ratio 0·60 [0·42-0·86]; nominal p=0·0061). Safety profiles were generally similar for ataluren and placebo, except for the occurrence of increased creatinine concentrations (ie, acute kidney injury), which occurred in 18 (15%) of 118 patients in the ataluren group compared with one (<1%) of 120 patients in the placebo group. No life-threatening adverse events or deaths were reported in either group. I
nterpretation: Although ataluren did not improve lung function in the overall population of nonsense-mutation cystic fibrosis patients who received this treatment, it might be beneficial for patients not taking chronic inhaled tobramycin.
Funding: PTC Therapeutics, Cystic Fibrosis Foundation, US Food and Drug Administration's Office of Orphan Products Development, and the National Institutes of Health.
Resumo:
Background: Ivacaftor has shown a clinical benefit in patients with cystic fibrosis who have the G551D-CFTR mutation and reduced lung function. Lung clearance index (LCI) using multiple-breath washout might be an alternative to and more sensitive method than forced expiratory volume in 1 s (FEV1) to assess treatment response in the growing number of children and young adults with cystic fibrosis who have normal spirometry. The aim of the study was to assess the treatment effects of ivacaftor on LCI in patients with cystic fibrosis, a G551D-CFTR mutation, and an FEV1 >90% predicted. Methods: This phase 2, multicentre, placebo-controlled, double-blind 2×2 crossover study of ivacaftor treatment was conducted in patients with cystic fibrosis, at least one G551D-CFTR allele, and an FEV1 >90% predicted. Patients also had to have an LCI higher than 7·4 at screening, age of 6 years or older, and a weight higher than or equal to 15 kg. Eligible patients were randomly allocated to receive one of two treatment sequences (placebo first followed by ivacaftor 150 mg twice daily [sequence 1] or ivacaftor 150 mg twice daily first followed by placebo [sequence 2]) of 28 days' treatment in each period, with a 28-day washout between the two treatment periods. Randomisation (ratio 1:1) was done with block sizes of 4, and all site personnel including the investigator, the study monitor, and the Vertex study team were masked to treatment assignment. The primary outcome measure was change from baseline in LCI. The study is registered at ClinicalTrials.gov, NCT01262352. Findings: Between February and November, 2011, 21 patients were enrolled, of which 11 were assigned to the sequence 1 group, and 10 to the sequence 2 group. 20 of these patients received treatment and 17 completed the trial (eight in sequence 1 group and 9 in sequence 2 group). Treatment with ivacaftor led to significant improvements compared with placebo in LCI (difference between groups in the average of mean changes from baseline at days 15 and 29 was -2·16 [95% CI -2·88 to -1·44]; p<0·0001). Adverse events experienced by study participants were similar between treatment groups; at least one adverse event was reported by 15 (79%) of 19 patients who received placebo and 13 (72%) of 18 patients who received ivacaftor. No deaths occurred during study period. Interpretation: In patients with cystic fibrosis aged 6 years or older who have at least one G551D-CFTR allele, ivacaftor led to improvements in LCI. LCI might be a more sensitive alternative to FEV1 in detecting response to intervention in these patients with mild lung disease. Funding: Vertex Pharmaceuticals Incorporated. © 2013 Elsevier Ltd.
Resumo:
Objective: Archipelago (AGO, also known as hCdc4, Fbw7, or Sel-10) is an F-box containing component of the SCF complex implicated in the ubiquitination and proteolysis of cyclin E and c-Myc, and found to be mutated in 16% of endometrial carcinomas. We have previously reported somatic mutations in AGO in 3/10 ovarian cancer cell lines, but the frequency of such mutations in primary ovarian cancer is unknown.
Methods: The coding sequence of AGO was analyzed in 95 primary sporadic ovarian tumors and 16 cases of familial ovarian cancer, and correlated with levels of cyclin E and c-Myc protein expression. Constructs encoding mutations in AGO were transfected into an AGO-null cell line to directly test their ability to regulate cyclin E and c-Myc levels.
Results: Mutations were present in only 2 of 95 sporadic cases: a premature stop within the WD domain (471 Ter) and a missense change near the F-box (S245T). Both primary tumor specimens containing these mutations showed high levels of cyclin E and c-Myc, but reconstitution of an AGO-null cell line with constructs encoding these mutations showed 471 Ter to be inactive in regulating endogenous cyclin E and c-Myc levels, while the S245T mutant was indistinguishable from wild-type. No germ-line mutations were found in familial cases of ovarian cancer.
Conclusion: Somatic AGO mutations are infrequent in primary ovarian cancers and are unlikely to contribute to familial ovarian cancer. Reconstitution experiments, rather than measuring tumor levels of cyclin E and c-Myc, provide an effective approach to determine the functional significance of AGO mutations identified in human cancers.
Resumo:
BACKGROUND: Ivacaftor has been previously assessed in patients with cystic fibrosis with Gly551Asp-CFTR or other gating mutations. We assessed ivacaftor in patients with Arg117His-CFTR, a residual function mutation.
METHODS: We did a 24-week, placebo-controlled, double-blind, randomised clinical trial, which enrolled 69 patients with cystic fibrosis aged 6 years and older with Arg117His-CFTR and percentage of predicted forced expiratory volume in 1 s (% predicted FEV1) of at least 40. We randomly assigned eligible patients (1:1) to receive placebo or ivacaftor 150 mg every 12 h for 24 weeks. Randomisation was stratified by age (6-11, 12-17, and ≥18 years) and % predicted FEV1 (<70, ≥70 to ≤90, and >90). The primary outcome was the absolute change from baseline in % predicted FEV1 through week 24. Secondary outcomes included safety and changes in sweat chloride concentrations and Cystic Fibrosis Questionnaire-Revised (CFQ-R) respiratory domain scores. An open-label extension enrolled 65 of the patients after washout; after 12 weeks, we did an interim analysis.
FINDINGS: After 24 weeks, the treatment difference in mean absolute change in % predicted FEV1 between ivacaftor (n=34) and placebo (n=35) was 2·1 percentage points (95% CI -1·13 to 5·35; p=0·20). Ivacaftor treatment resulted in significant treatment differences in sweat chloride (-24·0 mmol/L, 95% CI -28·01 to -19·93; p<0·0001) and CFQ-R respiratory domain (8·4, 2·17 to 14·61; p=0·009). In prespecified subgroup analyses, % predicted FEV1 significantly improved with ivacaftor in patients aged 18 years or older (treatment difference vs placebo: 5·0 percentage points, 95% CI 1·15 to 8·78; p=0·01), but not in patients aged 6-11 years (-6·3 percentage points, -11·96 to -0·71; p=0·03). In the extension study, both placebo-to-ivacaftor and ivacaftor-to-ivacaftor groups showed % predicted FEV1 improvement (absolute change from post-washout baseline at week 12: placebo-to-ivacaftor, 5·0 percentage points [p=0·0005]; ivacaftor-to-ivacaftor, 6·0 percentage points [p=0·006]). We did not identify any new safety concerns. The studies are registered with ClinicalTrials.gov (the randomised, placebo-controlled study, number NCT01614457; the open-label extension study, number NCT01707290).
INTERPRETATION: Although this study did not show a significant improvement in % predicted FEV1, ivacaftor did significantly improve sweat chloride and CFQ-R respiratory domain scores and lung function in adult patients with Arg117His-CFTR, indicating that ivacaftor might benefit patients with Arg117His-CFTR who have established disease.
Resumo:
BACKGROUND: The chronic myeloproliferative disorders (MPD) are clonal haemopoietic stem cell disorders.
AIMS: The incidence of JAK2 V617F mutation was sought in a population of patients with MPD.
METHODS: The JAK2 V617 mutation status was determined in 79 patients with known MPD and 59 patients with features suggestive of MPD.
RESULTS: The mutation was found in patients with polycythaemia vera, essential thrombocythaemia, idiopathic myelofibrosis and in patients with other chronic myeloproliferative disorders. Eight JAK2 V617F positive cases were identified amongst those patients with features suggestive of MPD.
CONCLUSIONS: The incidence of the JAK2 V617F mutation in MPD patients is similar to that reported by other groups. The assay confirmed and refined the diagnosis of several patients with features indicative of MPD. We suggest screening for this mutation in all patients with known and suspected MPD as identification is valuable in classification and is a potential target for signal transduction therapy.
Resumo:
BACKGROUND: Prostate cancer (PCa) is the most common cancer in men. PCa is strongly age associated; low death rates in surveillance cohorts call into question the widespread use of surgery, which leads to overtreatment and a reduction in quality of life. There is a great need to increase the understanding of tumor characteristics in the context of disease progression.
OBJECTIVE: To perform the first multigenome investigation of PCa through analysis of both autosomal and mitochondrial DNA, and to integrate exome sequencing data, and RNA sequencing and copy-number alteration (CNA) data to investigate how various different tumor characteristics, commonly analyzed separately, are interconnected.
DESIGN, SETTING, AND PARTICIPANTS: Exome sequencing was applied to 64 tumor samples from 55 PCa patients with varying stage and grade. Integrated analysis was performed on a core set of 50 tumors from which exome sequencing, CNA, and RNA sequencing data were available.
OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Genes, mutated at a significantly higher rate relative to a genomic background, were identified. In addition, mitochondrial and autosomal mutation rates were correlated to CNAs and proliferation, assessed as a cell cycle gene expression signature.
RESULTS AND LIMITATIONS: Genes not previously reported to be significantly mutated in PCa, such as cell division cycle 27 homolog (Saccharomyces cerevisiae) (CDC27), myeloid/lymphoid or mixed-lineage leukemia 3 (MLL3), lysine (K)-specific demethylase 6A (KDM6A), and kinesin family member 5A (KIF5A) were identified. The mutation rate in the mitochondrial genome was 55 times higher than that of the autosomes. Multilevel analysis demonstrated a tight correlation between high reactive-oxygen exposure, chromosomal damage, high proliferation, and in parallel, a transition from multiclonal indolent primary PCa to monoclonal aggressive disease. As we only performed targeted sequence analysis; copy-number neutral rearrangements recently described for PCa were not accounted for.
CONCLUSIONS: The mitochondrial genome displays an elevated mutation rate compared to the autosomal chromosomes. By integrated analysis, we demonstrated that different tumor characteristics are interconnected, providing an increased understanding of PCa etiology.
Resumo:
The role of antiplatelet therapy as primary prophylaxis of thrombosis in low-risk essential thrombocythemia has not been studied in randomized clinical trials. We assessed the benefit/risk of low-dose aspirin in 433 low-risk essential thrombocythemia patients (CALR-mutated n=271, JAK2V617F-mutated n=162) who were on antiplatelet therapy or observation only. After a 2215 person-years follow-up free from cytoreduction, 25 thrombotic and 17 bleeding episodes were recorded. In CALR-mutated patients, antiplatelet therapy did not affect the risk of thrombosis but was associated with a higher incidence of bleeding (12.9 vs. 1.8 x1000 patient-years, p=0.03). In JAK2V617F-mutated patients, low-dose aspirin was associated with a reduced incidence of venous thrombosis with no effect on the risk of bleeding. Coexistence of JAK2V617F-mutation and cardiovascular risk factors increased the risk of thrombosis, even after adjusting for treatment with low-dose aspirin (incidence rate ratio: 9.8; 95% confidence interval: 2.3-42.3; p=0.02). Time free from cytoreduction was significantly shorter in CALR-mutated than in JAK2V617F-mutated essential thrombocythemia (median time 5 years and 9.8 years, respectively; p=0.0002) usually to control extreme thrombocytosis. In conclusion, in patients with low-risk, CALR-mutated essential thrombocythemia, low-dose aspirin does not reduce the risk of thrombosis and may increase the risk of bleeding.