18 resultados para Pressure distribution


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanism whereby the foundation loading is transmitted through stone the column (included in soft clay) has received less attention from researchers. This paper reports on some interesting findings obtained from a laboratory-based model study in respect of this issue. The stone column, included in the soft clay bed was subjected to foundation loading under drained conditions. The results show, probably for the first time, how the foundation loadings are transmitted through the column and indeed the existence of “negative skin friction” (a widely accepted phenomena in solid piles) in granular columns in soft clays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanism whereby foundation loading is transmitted through the column has received little attention from researchers. This paper reports on some interesting findings obtained from a laboratory-based model study in respect of this issue. The model tests were carried out on samples of soft clay, 300 mm in diameter and 400 mm high. The samples were reinforced with fully penetrating stone columns, of three different diameters, made of crushed basalt. Four pressure cells were located along each stone column. The 60 mm diameter footing used in the model was supported on a clay bed reinforced with a stone column and subjected to foundation loading under drained conditions. The results show that the dissipation of excess pore water pressure developed during the initial application of total stresses, when the foundation was subjected to no loading, generated considerable stresses within the column, and that this was directly attributable to the development of negative skin friction. The pressure distributions in the column during foundation loading showed some complex behaviour.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An extensive experimental program has been carried out on a 135?mm tip diameter radial turbine using a variety of stator designs, in order to facilitate direct performance comparisons of varying stator vane solidity and the effect of varying the vaneless space. A baseline vaned stator was designed using commercial blade design software, having 15 vanes and a vane trailing edge to rotor leading edge radius ratio (Rte/rle) of 1.13. Two additional series of stator vanes were designed and manufactured; one series having varying vane numbers of 12, 18, 24, and 30, and a further series with Rte/rle ratios of 1.05, 1.175, 1.20, and 1.25. As part of the design process a series of CFD simulations were carried out in order to guide design iterations towards achieving a matched flow capacity for each stator. In this way the variations in the measured stage efficiency could be attributed to the stator passages only, thus allowing direct comparisons to be made. Interstage measurements were taken to capture the static pressure distribution at the rotor inlet and these measurements were then used to validate subsequent numerical models. The overall losses for different stators have been quantified and the variations in the measured and computed efficiency were used to recommend optimum values of vane solidity and Rte/rle.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The accurate definition of the extreme wave loads which act on offshore structures represents a significant challenge for design engineers and even with decades of empirical data to base designs upon there are still failures attributed to wave loading. The environmental conditions which cause these loads are infrequent and highly non-linear which means that they are not well understood or simple to describe. If the structure is large enough to affect the incident wave significantly further non-linear effects can influence the loading. Moreover if the structure is floating and excited by the wave field then its responses, which are also likely to be highly non-linear, must be included in the analysis. This makes the description of the loading on such a structure difficult to determine and the design codes will often suggest employing various tools including small scale experiments, numerical and analytical methods, as well as empirical data if available.
Wave Energy Converters (WECs) are a new class of offshore structure which pose new design challenges, lacking the design codes and empirical data found in other industries. These machines are located in highly exposed and energetic sites, designed to be excited by the waves and will be expected to withstand extreme conditions over their 25 year design life. One such WEC is being developed by Aquamarine Power Ltd and is called Oyster. Oyster is a buoyant flap which is hinged close to the seabed, in water depths of 10 to 15m, piercing the water surface. The flap is driven back and forth by the action of the waves and this mechanical energy is then converted to electricity.
It has been identified in previous experiments that Oyster is not only subject to wave impacts but it occasionally slams into the water surface with high angular velocity. This slamming effect has been identified as an extreme load case and work is ongoing to describe it in terms of the pressure exerted on the outer skin and the transfer of this short duration impulsive load through various parts of the structure.
This paper describes a series of 40th scale experiments undertaken to investigate the pressure on the face of the flap during the slamming event. A vertical array of pressure sensors are used to measure the pressure exerted on the flap. Characteristics of the slam pressure such as the rise time, magnitude, spatial distribution and temporal evolution are revealed. Similarities are drawn between this slamming phenomenon and the classical water entry problems, such as ship hull slamming. With this similitude identified, common analytical tools are used to predict the slam pressure which is compared to that measured in the experiment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diagnostic-based modeling (DBM) actively combines complementary advantages of numerical plasma simulations and relatively simple optical emission spectroscopy (OES). DBM is applied to determine spatial absolute atomic oxygen ground-state density profiles in a micro atmospheric-pressure plasma jet operated in He–O2. A 1D fluid model with semi-kinetic treatment of the electrons yields detailed information on the electron dynamics and the corresponding spatio-temporal electron energy distribution function. Benchmarking this time- and space-resolved simulation with phase-resolved OES (PROES) allows subsequent derivation of effective excitation rates as the basis for DBM. The population dynamics of the upper O(3p3P) oxygen state (? = 844 nm) is governed by direct electron impact excitation, dissociative excitation, radiation losses, and collisional induced quenching. Absolute values for atomic oxygen densities are obtained through tracer comparison with the upper Ar(2p1) state (? = 750.4 nm). The resulting spatial profile for the absolute atomic oxygen density shows an excellent quantitative agreement to a density profile obtained by two-photon absorption laser-induced fluorescence spectroscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article describes the results of a comprehensive investigation to determine the link between process parameters and observed wall thickness output for the plug-assisted thermoforming process. The overall objective of the work was to systematically investigate the process parameters that may be adjusted during production to control the wall thickness distribution of parts manufactured by plug-assisted thermoforming. The parameters investigated were the sheet temperature, plug temperature, plug speed, plug displacement, plug shape, and air pressure. As well as quantifying the effects of each parameter on the wall thickness distribution, a further aim of the work was to improve the understanding of the physical mechanisms of deformation of the sheet during the different stages of the process. The process parameters shown to have the greatest effect on experimentally determined wall thickness distribution were the plug displacement, sheet temperature, plug temperature, and plug shape. It is proposed that during the plug-assisted thermoforming of polystyrene the temperature dependent friction between the plug and sheet surface was the most important factor in determining product wall thickness distribution, whereas heat transfer was shown to play a less important role. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction Changes in the distribution of interstitial cells (IC) are reportedly associated with dysfunctional bladder. The present study investigated whether spinal cord injury (SCI) resulted in changes to IC subpopulations (vimentin-positive with the ultrastructural profile of IC), smooth muscle and nerves within the bladder wall and correlated cellular remodelling with functional properties. Methods Bladders from SCI (T8/9 transection) and sham-operated rats five-weeks post-injury were used for ex vivo pressure-volume experiments or processed for morphological analysis with transmission electron microscopy (TEM) and light/confocal microscopy. Results Pressure-volume relationships revealed low-pressure, hypercompliance in SCI bladders indicative of decompensation. Extensive networks of vimentin-positive IC were typical in sham lamina propria and detrusor but were markedly reduced post-SCI; semi-quantitative analysis showed significant reduction. Nerves labelled with anti-neurofilament and anti-vAChT were notably decreased post-SCI. TEM revealed lamina propria IC and detrusor IC which formed close synaptic-like contacts with vesicle-containing nerve varicosities in shams. Lamina propria and detrusor IC were ultrastructurally damaged post-SCI with retracted/lost cell processes and were adjacent to areas of cellular debris and neuronal degradation. Smooth muscle hypertrophy was common to SCI tissues. Conclusions IC populations in bladder wall were decreased five weeks post-SCI, accompanied with reduced innervation, smooth muscle hypertrophy and increased compliance. These novel findings indicate that bladder wall remodelling post-SCI affects the integrity of interactions between smooth muscle, nerves and IC, with compromised IC populations. Correlation between IC reduction and a hypercompliant phenotype suggests that disruption to bladder IC contribute to pathophysiological processes underpinning the dysfunctional SCI bladder.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here a self-consistent continuum model is presented for a narrow gap plane-parallel dc glow discharge. The set of governing equations consisting of continuity and momentum equations for positive ions, fast (emitted by the cathode) and slow electrons (generated by fast electron impact ionization) coupled with Poisson's equation is treated by the technique of matched asymptotic expansions. Explicit results are obtained in the asymptotic limit: (chi delta) much less than 1, where chi = e Phi(a)/kT, delta = (r(D)/L)(2) (Phi(a) is the applied voltage, r(D) is the Debye radius) and pL much greater than 1(Hg mm cm), where p is the gas pressure and L is the gap length. In the case of high pressure, the electron energy relaxation length is much smaller than the gap length, and so the local field approximation is valid. The discharge space divides naturally into a cathode fall sheath, a quasineutral plasma region, and an anode fall sheath. The electric potential distribution obtained for each region in a (semi)analytical form is asymptotically matched to the adjoining regions in the region of overlap. The effects of the gas pressure, gap length, and applied voltage on the length of each region are investigated. (C) 2000 American Institute of Physics. [S1070-664X(00)01302-1].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical emission spectra from a low-pressure Ar plasma were studied with high spatial resolution. It has been shown that the intensity ratios of Ar lines excited through metastable levels to those excited directly from the ground state are sensitive to the shape of electron energy distribution function. From these measurements, important information on the spatial variation of plasma parameters can be obtained. (C) 1999 American Institute of Physics. [S0003-6951(99)01629-0].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The second derivative of a Langmuir probe characteristic is used to establish the electron energy distribution function (EEDF) in both a tandem and hybrid multicusp H- ion source. Moveable probes are used to establish the spatial variation of the EEDF. The negative ion density is measured by laser induced photo-detachment. In the case of the hybrid source the EEDF consists of a cold Maxwellian in the central region of the source; the electron temperature increases with increasing discharge current (rising from 0.3 eV at 1 A to 1.2 eV at 50 A when the pressure is 0.4 Pa). A hot-electron tail exists in the EEDF of the driver region adjacent to each filament which is shown to consist of a distinct group of primary electrons at low pressure (0.08 Pa) but becomes degraded mainly through inelastic collisions at higher pressures (0.27 Pa). The tandem source, on the other hand, has a single driver region which extends throughout the central region. The primary electron confinement times are much longer so that even at the lowest pressure considered (0.07 Pa) the primaries are degraded. In both cases the measured EEDF at specific locations and values of discharge operating parameters are used to establish the rate coefficients for the processes of importance in H- production and destruction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study is performed to examine the distribution and frequency of 25S rRNA intron genotypes of Candida albicans isolated from different anatomical sites of patients in an intensive care unit (ICU) setting. Germ-tube positive Candida isolates (n=65) from 65 patients are included and isolates are characterised by 25S intron genotyping, whereby all can be subdivided into four genotypes (A-D). Results demonstrated that there were no significant differences between the frequency and genotype distribution of the Candida isolates and the anatomical site of colonisation. Furthermore, analysis of the transposable intron region in the 25S rRNA gene demonstrated equal distribution, regardless of age and anatomical site of isolation (groin, throat, etc.). Therefore, there does not appear to be any selective pressure associated with any anatomical site, resulting in an ecological shift in the frequency of genotypes present. This suggests that C. albicans intron genotypes equally colonise those sites of the body examined in this study. Although such an ecological finding as this is interesting, it perpetuates the continued need to find a genotypic typing scheme that helps to identify the source (nosocomial or endogenous) and mode of entry of C. albicans into patients in the ICU setting, resulting in C. albicans bloodstream infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arsenic (As) contamination of rice grains and the generally low concentration of micronutrients in rice have been recognized as a major concern for human health. Here, we investigated the speciation and localization of As and the distribution of (micro)nutrients in rice grains because these are key factors controlling bioavailability of nutrients and contaminants. Bulk total and speciation analyses using high-pressure liquid chromatography (HPLC)-inductively coupled plasma mass spectrometry (ICP-MS) and X-ray absorption near-edge spectroscopy (XANES) was complemented by spatially resolved microspectroscopic techniques (micro-XANES, micro-X-ray fluorescence (micro-XRF) and particle induced X-ray emission (PIXE)) to investigate both speciation and distribution of As and localization of nutrients in situ. The distribution of As and micronutrients varied between the various parts of the grains (husk, bran and endosperm) and was characterized by element-specific distribution patterns. The speciation of As in bran and endosperm was dominated by As(III)-thiol complexes. The results indicate that the translocation from the maternal to filial tissues may be a bottleneck for As accumulation in the grain. Strong similarities between the distribution of iron (Fe), manganese (Mn) and phosphorus (P) and between zinc (Zn) and sulphur (S) may be indicative of complexation mechanisms in rice grains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the European Union, food is considered safe with regard to Listeria monocytogenes if its numbers do not exceed 100 cfu/g throughout the shelf-life of the food. Therefore, it is important to determine if a food supports growth of L. monocytogenes. Challenge tests are laboratory-based studies that measure the growth of L. monocytogenes on artificially contaminated food stored under foreseeable conditions of transportation, distribution and storage. The aim of this study was to elaborate and optimize a user-friendly protocol to perform challenge tests on food and to apply it to determine whether growth of L. monocytogenes is supported during the production and distribution of a potentially risky food i.e. mushrooms. A three-strain mixture of L. monocytogenes was inoculated onto three independent batches of whole mushrooms, sliced mushrooms, mushroom casing and mushroom substrate at a concentration of about 100 -1000 cfu/g. The batches were incubated at potential abuse temperatures, as a worst case scenario, and at intervals during storage L. monocytogenes numbers, % moisture and pH were determined. The results showed that the sliced and whole mushrooms supported growth of L. monocytogenes while mushroom casing allowed survival but did not support growth. Mushroom substrate showed a rich background microflora able of growing in Listeria selective media which hindered enumeration of L. monocytogenes. Combase predictions were not always accurate, indicating that challenge tests are a necessary part of growth determination of L. monocytogenes.