11 resultados para Premixed Turbulent Combustion


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The structure of a turbulent non-premixed flame of a biogas fuel in a hot and diluted coflow mimicking moderate and intense low dilution (MILD) combustion is studied numerically. Biogas fuel is obtained by dilution of Dutch natural gas (DNG) with CO2. The results of biogas combustion are compared with those of DNG combustion in the Delft Jet-in-Hot-Coflow (DJHC) burner. New experimental measurements of lift-off height and of velocity and temperature statistics have been made to provide a database for evaluating the capability of numerical methods in predicting the flame structure. Compared to the lift-off height of the DNG flame, addition of 30 % carbon dioxide to the fuel increases the lift-off height by less than 15 %. Numerical simulations are conducted by solving the RANS equations using Reynolds stress model (RSM) as turbulence model in combination with EDC (Eddy Dissipation Concept) and transported probability density function (PDF) as turbulence-chemistry interaction models. The DRM19 reduced mechanism is used as chemical kinetics with the EDC model. A tabulated chemistry model based on the Flamelet Generated Manifold (FGM) is adopted in the PDF method. The table describes a non-adiabatic three stream mixing problem between fuel, coflow and ambient air based on igniting counterflow diffusion flamelets. The results show that the EDC/DRM19 and PDF/FGM models predict the experimentally observed decreasing trend of lift-off height with increase of the coflow temperature. Although more detailed chemistry is used with EDC, the temperature fluctuations at the coflow inlet (approximately 100K) cannot be included resulting in a significant overprediction of the flame temperature. Only the PDF modeling results with temperature fluctuations predict the correct mean temperature profiles of the biogas case and compare well with the experimental temperature distributions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Combustion noise is becoming increasingly important as a major noise source in aeroengines and ground based gas turbines. This is partially because advances in design have reduced the other noise sources, and partially because next generation combustion modes burn more unsteadily, resulting in increased external noise from the combustion. This review reports recent progress made in understanding combustion noise by theoretical, numerical and experimental investigations. We first discuss the fundamentals of the sound emission from a combustion region. Then the noise of open turbulent flames is summarized. We subsequently address the effects of confinement on combustion noise. In this case not only is the sound generated by the combustion influenced by its transmission through the boundaries of the combustion chamber, there is also the possibility of a significant additional source, the so-called ‘indirect’ combustion noise. This involves hot spots (entropy fluctuations) or vorticity perturbations produced by temporal variations in combustion, which generate pressure waves (sound) as they accelerate through any restriction at the exit of the combustor. We describe the general characteristics of direct and indirect noise. To gain further insight into the physical phenomena of direct and indirect sound, we investigate a simple configuration consisting of a cylindrical or annular combustor with a low Mach number flow in which a flame zone burns unsteadily. Using a low Mach number approximation, algebraic exact solutions are developed so that the parameters controlling the generation of acoustic, entropic and vortical waves can be investigated. The validity of the low Mach number approximation is then verified by solving the linearized Euler equations numerically for a wide range of inlet Mach numbers, stagnation temperature ratios, frequency and mode number of heat release fluctuations. The effects of these parameters on the magnitude of the waves produced by the unsteady combustion are investigated. In particular the magnitude of the indirect and direct noise generated in a model combustor with a choked outlet is analyzed for a wide range of frequencies, inlet Mach numbers and stagnation temperature ratios. Finally, we summarize some of the unsolved questions that need to be the focus of future research

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A large eddy simulation is performed to study the deflagration to detonation transition phenomenon in an obstructed channel containing premixed stoichiometric hydrogen–air mixture. Two-dimensional filtered reactive Navier–Stokes equations are solved utilizing the artificially thickened flame approach (ATF) for modeling sub-grid scale combustion. To include the effect of induction time, a 27-step detailed mechanism is utilized along with an in situ adaptive tabulation (ISAT) method to reduce the computational cost due to the detailed chemistry. The results show that in the slow flame propagation regime, the flame–vortex interaction and the resulting flame folding and wrinkling are the main mechanisms for the increase of the flame surface and consequently acceleration of the flame. Furthermore, at high speed, the major mechanisms responsible for flame propagation are repeated reflected shock–flame interactions and the resulting baroclinic vorticity. These interactions intensify the rate of heat release and maintain the turbulence and flame speed at high level. During the flame acceleration, it is seen that the turbulent flame enters the ‘thickened reaction zones’ regime. Therefore, it is necessary to utilize the chemistry based combustion model with detailed chemical kinetics to properly capture the salient features of the fast deflagration propagation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study provides experimental and theoretical evidence that the coating of the inner surface of copper pipes with superhydrophobic (SH) materials induces a Cassie state flow regime on the flow of water. This results in an increase in the fluid's dimensionless velocity distribution coefficient, a, which gives rise to an increase in the apparent Reynolds number, which may approach the "plug flow state". Experimental evidence from the SH coating of a classic unsteady-state flow system resulted in a significant decrease in the friction factor and associated energy loss. The friction factor decrease can be attributed to an increase in the apparent Reynolds number. The study demonstrates that the Cassie effects imposed by SH coating can be quantitatively shown to decrease the frictional resistance to flow in commercial pipes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A key issue in pulse detonation engine development is better understanding of the detonation structure and its propagation mechanism. Thus, in the present work the turbulent structure of an irregular detonation is studied through very high resolution numerical simulations of 600 points per half reaction length. The aim is to explore the nature of the transverse waves during the collision and reflection processes of the triple point with the channel walls. Consequently the formation and consumption mechanism of unreacted gas pockets is studied. Results show that the triple point and the transverse wave collide simultaneously with the wall. The strong transverse wave switches from a primary triple point before collision to a new one after reflection. Due to simultaneous interaction of the triple point and the transverse wave with the wall in the second half of the detonation cell, a larger high-pressurised region appears on the wall. During the reflection the reaction zone detaches from the shock front and produces a pocket of unburned gas. Three mechanisms found to be of significance in the re-initiation mechanism of detonation at the end of the detonation cell; i: energy resealed via consumption of unburned pockets by turbulent mixing ii: compression waves arise due to collision of the triple point on the wall which helps the shock to jump abruptly to an overdriven detonation iii: drastic growth of the Richtmyer–Meshkov instability causing a part of the front to accelerate with respect to the neighbouring portions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical predictions of the turbulent flow and heat transfer of a stationary duct with square ribs 45° angled to the main flow direction are presented. The rib height to channel hydraulic diameter is 0.1, the rib pitch to rib height is 10. The calculations have been carried out for a bulk Reynolds number of 50,000. The flows generated by ribs are dominated by separating and reattaching shear layers with vortex shedding and secondary flows in the cross-section. The hybrid RANS-LES approach is adopted to simulate such flows at a reasonable computation cost. The capability of the various versions of DES method, depending the RANS model, such as DES-SA, DES-RKE, DES-SST, have been compared and validated against the experiment. The significant effect of RANS model on the accuracy of the DES prediction has been shown. The DES-SST method, which was able to reproduce the correct physics of flow and heat transfer in a ribbed duct showed better performance than others.