6 resultados para Predation risk
Resumo:
We examined the trade-off between the behaviours associated with predator avoidance and mate acquisition in the mate-guarding amphipod crustacean Gammarus duebeni. We used laboratory experiments to investigate the impact of olfactory predator cues on activity, mate choice and mate-guarding behaviour of males and females. Pair formation declined under perceived risk of predation, reflecting reduced activity of both males and females and hence a reduced likelihood of encountering a mate. We also observed a reduction in the choosiness of both males and females. Under increased perceived predation risk, assessment of the female by the male was more likely to be followed by pair formation, and males showed a nonsignificant trend towards reduced discrimination in favour of large females and were less tenacious in their pair bond when they paired during exposure to predator cues. Females also showed less resistance behaviour, suggesting that both males and females trade off the costs of maximizing current reproductive success against the benefits of predator avoidance for survival and reproduction in the future. We discuss the implications of such context-dependent mating behaviours for ecological interactions between species and suggest that predators, via the effects of perceived predation risk on mate choice and mate guarding in the prey species, induce trait-mediated indirect effects with the potential to influence population dynamics and community structure. (C) 2008 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
Tamarin monkeys, of the genus Saguinus, spend over half their lives at arboreal sleeping sites. The decision as to which site to use is likely to have considerable fitness consequences. These decisions about sleeping sites by three troops of golden-handed tamarin Saguinus midas midas were examined over a 9-mo period at a rainforest site in French Guiana. Data are presented on the physical nature of sleeping sites, their number, position within home ranges, and pattern of use and reuse, aspects of behaviour at retirement and egress, and predation attempts on the study troops. Cumulative plot analysis indicated that a tamarin troop used 30-40 sleeping sites in a 100-day period, approximately half of which were used very infrequently, so that consecutive reuse was never greater than three nights. Sleeping trees were superior in architectural parameters and liana weight to non-sleeping trees. There were no more sleeping sites than expected within the home range boundary region of the tamarins or in areas of overlap with the home ranges of neighbouring troops. Tamarins selected sleeping sites nearest to the last feeding site of the day on 25% of occasions. The study troops engaged in a number of activities that may reduce predation risk; raptor attacks on the study troops over 9 mo were frequent but unsuccessful. Tamarins often visited a sleeping site several hours before arrival, and were more likely to visit a site before use if they had not used it recently. The decision to select a sleeping site therefore involved knowledge of the previous frequency of use of that site.
Resumo:
Animals often show behavioural plasticity with respect to predation risk but also show behavioural syndromes in terms of consistency of responses to different stimuli. We examine these features in the freshwater pearl mussel. These bivalves often aggregate presumably to reduce predation risk to each individual. Predation risk, however, will be higher in the presence of predator cues. Here we use dimming light, vibration and touch as novel stimuli to examine the trade-off between motivation to feed and motivation to avoid predation. We present two experiments that each use three sequential novel stimuli to cause the mussels to close their valves and hence cease feeding. We find that mussels within a group showed shorter closure times than solitary mussels, consistent with decreased vulnerability to predation in group-living individuals. Mussels exposed to the odour of a predatory crayfish showed longer closures than control mussels, highlighting the predator assessment abilities of this species. However, individuals showed significant consistency in their closure responses across the trial series, in line with behavioural syndrome theory. Our results show that bivalves trade-off feeding and predator avoidance according to predation risk but the degree to which this is achieved is constrained by behavioural consistency. © 2011 Elsevier B.V.
Resumo:
Changing energy requirements and dramatic shifts in food availability are major factors driving behaviour and distribution of herbivores. We investigate this in wintering East Canadian High Arctic light-bellied brent geese Branta bernicla hrota in Northern Ireland. They followed a sequential pattern of habitat use, feeding on intertidal Zostera spp. in autumn and early winter before moving to predominantly saltmarsh and farmland in late winter and early spring. Night-time feeding occurred throughout and made a considerable contribution to the birds' daily energy budget, at times accounting for > 50% of energy intake. Nocturnal feeding, however, is limited to the intertidal, possibly because of predation risk on terrestrial habitat, and increases with moonlight. The amount of Zostera spp., declined dramatically after the arrival of birds, predominantly, but not entirely, due to consumption by the birds. Birds gained fat reserves in the first 2 months but then this was dramatically lost as their major food source collapsed and their daily energy intake declined. Single birds consistently fared worse than paired birds and pairs with juveniles fared better than those without suggesting a benefit of having a family to compete for food. Many birds leave the Lough at this time of reduced Zostera spp. for other sea inlets in Ireland but some remain. Body condition of the latter gradually improved in early spring and reflected a heavy reliance on terrestrial habitats, particularly farmland, to meet the birds' daily energy requirements. However, even in the period immediately before migration to the breeding ground, the birds did not regain the amount of abdominal fatness observed in November. The dramatic changes in available food and requirements of the birds drive the major changes seen in foraging behaviour as the birds evade starvation in the wintering period.
Resumo:
A new model to explain animal spacing, based on a trade-off between foraging efficiency and predation risk, is derived from biological principles. The model is able to explain not only the general tendency for animal groups to form, but some of the attributes of real groups. These include the independence of mean animal spacing from group population, the observed variation of animal spacing with resource availability and also with the probability of predation, and the decline in group stability with group size. The appearance of "neutral zones" within which animals are not motivated to adjust their relative positions is also explained. The model assumes that animals try to minimize a cost potential combining the loss of intake rate due to foraging interference and the risk from exposure to predators. The cost potential describes a hypothetical field giving rise to apparent attractive and repulsive forces between animals. Biologically based functions are given for the decline in interference cost and increase in the cost of predation risk with increasing animal separation. Predation risk is calculated from the probabilities of predator attack and predator detection as they vary with distance. Using example functions for these probabilities and foraging interference, we calculate the minimum cost potential for regular lattice arrangements of animals before generalizing to finite-sized groups and random arrangements of animals, showing optimal geometries in each case and describing how potentials vary with animal spacing. (C) 1999 Academic Press.</p>
Resumo:
Many marine organisms have pelagic larval stages that settle into benthic habitats occupied by older individuals; however, a mechanistic understanding of inter cohort interactions remains elusive for most species. Patterns of spatial covariation in the densities of juvenile and adult age classes of a small temperate reef fish, the common triplefin (Forsterygion lapillum), were evaluated during the recruitment season (Feb–Mar, 2011) in Wellington, New Zealand (41°17′S, 174°46′E). The relationship between juvenile and adult density among sites was best approximated by a dome-shaped curve, with a negative correlation between densities of juveniles and adults at higher adult densities. The curve shape was temporally variable, but was unaffected by settlement habitat type (algal species). A laboratory experiment using a “multiple-predator effects”design tested the hypothesis that increased settler mortality in the presence of adults (via enhanced predation risk or cannibalism) contributed to the observed negative relationship between juveniles and adults. Settler mortality did not differ between controls and treatments that contained either one (p = 0.08) or two (p = 0.09) adults. However, post hoca analyses revealed a significant positive correlation between the mean length of juveniles used in experimental trials and survival of juveniles in these treatments, suggesting that smaller juveniles may be vulnerable to cannibalism. There was no evidence for risk enhancement or predator interference when adults were present alongside a hetero specific predator (F. varium). These results highlight the complex nature of intercohort relationships in shaping recruitment patterns and add to the growing body of literature recognizing the importance of age class interactions.