5 resultados para Potential of CO2 emission reduction
Resumo:
This chapter explores the trade-off between competing objectives of employment creation and climate policy commitments in Irish agriculture. A social accounting matrix (SAM) multiplier model is linked with a partial equilibrium agricultural sector model to simulate the impact of a number of GHG emission reduction scenarios, assuming these are achieved through a constraint on beef production. Limiting the size of the beef sector helps to reduce GHG emissions with a very limited impact on the value of agricultural income at the farm level. However, the SAM multiplier analysis shows that there would be significant employment losses in the wider economy. From a policy perspective, a pragmatic approach to GHG emissions reductions in the agriculture sector, which balances opportunities for economic growth in the sector with opportunities to reduce associated GHG emissions, may be required.
Resumo:
This study provides experimental and theoretical evidence that the coating of the inner surface of copper pipes with superhydrophobic (SH) materials induces a Cassie state flow regime on the flow of water. This results in an increase in the fluid's dimensionless velocity distribution coefficient, a, which gives rise to an increase in the apparent Reynolds number, which may approach the "plug flow state". Experimental evidence from the SH coating of a classic unsteady-state flow system resulted in a significant decrease in the friction factor and associated energy loss. The friction factor decrease can be attributed to an increase in the apparent Reynolds number. The study demonstrates that the Cassie effects imposed by SH coating can be quantitatively shown to decrease the frictional resistance to flow in commercial pipes.
Resumo:
We present an analysis of an X-class flare that occurred on 11 June 2014 in active region NOAA 12087 using a newly developed high cadence Image
Selector operated by Astronomical Institute in Ondrejov, Czech Republic. This instrument provides spectra in the 350 - 440 nm wavelength range, which
covers the higher order Balmer lines as well as the Balmer jump at 364 nm. However, no detectable increase in these emissions were detected during
the flare, and support observations from SDO/EVE MEGS-B also show that the Lyman line series and recombination continuum were also suppressed,
particularly when compared to an M-class flare that occurred an hour earlier, and two other X-class flares on the preceding day. The X-class flare under
investigation also showed strong white light emission in SDO/HMI data, as well as an extremely hard electron spectrum ( 3.6), and
-ray emission,
from RHESSI data. This unique combination of datasets allows us to conclude that the white light emission from this flare corresponds to a black body
heated by high-energy electrons (and/or ions), as opposed to optical chromospheric emission from hydrogen.