13 resultados para Potassium in agriculture
Resumo:
The deployment of biofuels is significantly affected by policy in energy and agriculture. In the energy arena, concerns regarding the sustainability of biofuel systems and their impact on food prices led to a set of sustainability criteria in EU Directive 2009/28/EC on Renewable Energy. In addition, the 10% biofuels target by 2020 was replaced with a 10% renewable energy in transport target. This allows the share of renewable electricity used by electric vehicles to contribute to the mix in achieving the 2020 target. Furthermore, only biofuel systems that effect a 60% reduction in greenhouse gas emissions by 2020 compared with the fuel they replace are allowed to contribute to meeting the target. In the agricultural arena, cross-compliance (which is part of EU Common Agricultural Policy) dictates the allowable ratio of grassland to total agricultural land, and has a significant impact on which biofuels may be supported. This paper outlines the impact of these policy areas and their implications for the production and use of biofuels in terms of the 2020 target for 10% renewable transport energy, focusing on Ireland. The policies effectively impose constraints on many conventional energy crop biofuels and reinforce the merits of using biomethane, a gaseous biofuel. The analysis shows that Ireland can potentially satisfy 15% of renewable energy in transport by 2020 (allowing for double credit for biofuels from residues and ligno-cellulosic materials, as per Directive 2009/28/EC) through the use of indigenous biofuels: grass biomethane, waste and residue derived biofuels, electric vehicles and rapeseed biodiesel. © 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, an automatic Smart Irrigation Decision Support System, SIDSS, is proposed to manage irrigation in agriculture. Our system estimates the weekly irrigations needs of a plantation, on the basis of both soil measurements and climatic variables gathered by several autonomous nodes deployed in field. This enables a closed loop control scheme to adapt the decision support system to local perturbations and estimation errors. Two machine learning techniques, PLSR and ANFIS, are proposed as reasoning engine of our SIDSS. Our approach is validated on three commercial plantations of citrus trees located in the South-East of Spain. Performance is tested against decisions taken by a human expert.
Resumo:
The micro-irradiation technique continues to be highly relevant to a number of radiobiological studies in vitro. In particular, studies of the bystander effect show that direct damage to cells is not the only trigger for radiation-induced effects, but that unirradiated cells can also respond to signals from irradiated neighbours. Furthermore, the bystander response can be initiated even when no energy is deposited in the genomic DNA of the irradiated cell (i.e. by targeting just the cytoplasm).
Resumo:
Pesticide use is important in agriculture to protect crops and improve productivity. However, they have the potential to cause adverse human health or environmental effects, dependent on exposure levels. This review examines existing pesticide legislation worldwide, focusing on the level of harmonisation, and impacts of differing legislation on food safety and trade. Pesticide legislation varies greatly worldwide as countries have different requirements guidelines and legal limits for plant protection. Developed nations have more stringent regulations than developing countries, which lack the resources and expertise to adequately implement and enforce legislation. Global differences in pesticide legislation act as a technical barrier to trade. International parties such as the European Union (EU), Codex Alimentarius Commission (Codex), and North American Free Trade Agreement (NAFTA) have attempted to harmonise pesticide legislation by providing maximum residue limits (MRLs), but globally these limits remain variable. Globally harmonised pesticide standards would serve to increase productivity, profits and trade, and enhance the ability to protect public health and the environment.
Resumo:
This paper describes how urban agriculture differs from conventional agriculture not only in the way it engages with the technologies of growing, but also in the choice of crop and the way these are brought to market. The authors propose a new model for understanding these new relationships, which is analogous to a systems view of information technology, namely Hardware-Software- Interface.
The first component of the system is hardware. This is the technological component of the agricultural system. Technology is often thought of as equipment, but its linguistic roots are in ‘technis’ which means ‘know how’. Urban agriculture has to engage new technologies, ones that deal with the scale of operation and its context which is different than rural agriculture. Often the scale is very small, and soils are polluted. There this technology in agriculture could be technical such as aquaponic systems, or could be soil-based agriculture such as allotments, window-boxes, or permaculture. The choice of method does not necessarily determine the crop produced or its efficiency. This is linked to the biotic that is added to the hardware, which is seen as the ‘software’.
The software of the system are the ecological parts of the system. These produce the crop which may or may not be determined by the technology used. For example, a hydroponic system could produce a range of crops, or even fish or edible flowers. Software choice can be driven by ideological preferences such as permaculture, where companion planting is used to reduce disease and pests, or by economic factors such as the local market at a particular time of the year. The monetary value of the ‘software’ is determined by the market. Obviously small, locally produced crops are unlikely to compete against intensive products produced globally, however the value locally might be measured in different ways, and might be sold on a different market. This leads to the final part of the analogy - interface.
The interface is the link between the system and the consumer. In traditional agriculture, there is a tenuous link between the producer of asparagus in Peru and the consumer in Europe. In fact very little of the money spent by the consumer ever reaches the grower. Most of the money is spent on refrigeration, transport and profit for agents and supermarket chains. Local or hyper-local agriculture needs to bypass or circumvent these systems, and be connected more directly to the consumer. This is the interface. In hyper-localised systems effectiveness is often more important than efficiency, and direct links between producer and consumer create new economies.
Resumo:
With biochar becoming an emerging soil amendment and a tool to mitigate climate change, there are only a few studies documenting its effects on trace element cycling in agriculture. Zn and Cu are deficient in many human diets, whilst exposures to As, Pb and Cd need to be decreased. Biochar has been shown to affect many of them mainly at a bench or greenhouse scale, but field research is not available. In our experiment we studied the impact of biochar, as well as its interactions with organic (compost and sewage sludge) and mineral fertilisers (NPK and nitrosulfate), on trace element mobility in a Mediterranean agricultural field (east of Madrid, Spain) cropped with barley. At harvesting time, we analysed the soluble fraction, the available fraction (assessed with the diffusive gradients in thin gels technique, DGT) and the concentration of trace elements in barley grain. No treatment was able to significantly increase Zn, Cu or Ni concentration in barley grain, limiting the application for cereal fortification. Biochar helped to reduce Cd and Pb in grain, whereas As concentration slightly increased. Overall biochar amendments demonstrated a potential to decrease Cd uptake in cereals, a substantial pathway of exposure in the Spanish population, whereas mineral fertilisation and sewage sludge increased grain Cd and Pb. In the soil, biochar helped to stabilise Pb and Cd, while marginally increasing As release/mobilisation. Some of the fertilisation practises or treatments increased toxic metals and As solubility in soil, but never to an extent high enough to be considered an environmental risk. Future research may try to fortify Zn, Cu and Ni using other combinations of organic amendments and different parent biomass to produce enriched biochars.
Resumo:
A cellular imaging system, optimized for unstained cells seeded onto a thin substrate, is under development. This system will be a component of the endstation for the microbeam cell-irradiation facility at the University of Surrey. Previous irradiation experiments at the Gray Cancer Institute (GCI) have used Mylar film to support the cells [Folkard, M., Prise, K., Schettino, G., Shao, C., Gilchrist, S., Vojnovic, B., 2005. New insights into the cellular response to radiation using microbeams. Nucl. Instrum. Methods B 231, 189-194]. Although suitable for fluorescence microscopy, the Mylar often creates excessive optical noise when used with non-fluorescent microscopy. A variety of substrates are being investigated to provide appropriate optical clarity, cell adhesion, and radiation attenuation. This paper reports on our investigations to date.
Resumo:
A local collaborative process was launched in Windsor, Ontario, Canada to explore the role of occupation as a risk factor for cancer. An initial hypothesis-generating study found an increased risk for breast cancer among women aged 55 years or younger who had ever worked in farming. On the basis of this result, a 2-year case–control study was undertaken to evaluate the lifetime occupational histories of women with breast cancer. The results indicate that women with breast cancer were nearly three times more likely to have worked in agriculture when compared to the controls (OR = 2.80 [95% CI, 1.6–4.8]). The risk for those who worked in agriculture and subsequently worked in automotive-related manufacturing was further elevated (OR = 4.0 [95% CI, 1.7–9.9]). The risk for those employed in agriculture and subsequently employed in health care was also elevated (OR = 2.3 [95% CI, 1.1–4.6]). Farming tended to be among the earlier jobs worked, often during adolescence. While this article has limitations including the small sample size and the lack of information regarding specific exposures, it does provide evidence of a possible association between farming and breast cancer. The findings indicate the need for further study to determine which aspects of farming may be of biological importance and to better understand the significance of timing of exposure in terms of cancer risk.
Resumo:
While there are many case studies looking at gender mainstreaming in national contexts, this article offers a pan-European perspective to examine how a stated commitment to gender equality at this meta-level works in practice. The European Union’s (EU) stated commitment to gender mainstreaming the Common Agricultural Policy (CAP) is critically reviewed. The article reviews theoretical literature on gender mainstreaming, considers the position of women in agriculture across Europe, and examines efforts by the EU to gender mainstream the CAP. It argues that at best, gender mainstreaming focuses on the symptoms of gender inequality in agriculture rather than the causes. Because of this, gender mainstreaming cannot be transformative in this context. Little thought has been given to the practical difficulties of actually gender mainstreaming a policy such as the CAP. The EU’s priority for the CAP focuses on the mainstream business goal of a viable agricultural industry and does not pay any heed to gender inequalities in agriculture. In short, the stated commitment to gender mainstreaming is empty rhetoric
Resumo:
s-Triazine herbicides are used extensively in South America in agriculture and forestry. In this study, a bacterium designated as strain MHP41, capable of degrading simazine and atrazine, was isolated from agricultural soil in the Quillota valley, central Chile. Strain MHP41 is able to grow in minimal medium, using simazine as the sole nitrogen source. In this medium, the bacterium exhibited a growth rate of mu = 0.10 h(-1), yielding a high biomass of 4.2 x 10(8) CFU mL(-1). Resting cells of strain MHP41 degrade more than 80% of simazine within 60 min. The atzA, atzB, atzC, atzD, atzE and atzF genes encoding the enzymes of the simazine upper and lower pathways were detected in strain MHP41. The motile Gram-negative bacterium was identified as a Pseudomonas sp., based on the Biolog microplate system and comparative sequence analyses of the 16S rRNA gene. Amplified ribosomal DNA restriction analysis allowed the differentiation of strain MHP41 from Pseudomonas sp. ADP. The comparative 16S rRNA gene sequence analyses suggested that strain MHP41 is closely related to Pseudomonas nitroreducens and Pseudomonas multiresinovorans. This is the first s-triazine-degrading bacterium isolated in South America. Strain MHP41 is a potential biocatalyst for the remediation of s-triazine-contaminated environments.
Resumo:
The memoirs are dominated by two grand figures of Soviet history, Stalin and Khrushchev. The account of Stalin is riddled with ambiguities. There is an undoubted personal admiration for Stalin, his intellectual and political capacity (Stalin allegedly read 300 pages per day), his simplicity in daily life seen in "an old tunic, patched-up socks, almost constant isolation" (p. 190). At the same time, Shepilov acknowledged the paranoid aspects of Stalin's personality, especially towards the end of his life. Stalin's mechanisms of power are illustrated by Shepilov's account of work on a new book on political economy. Stalin personally chose key people for important tasks and controlled them at key junctures to ensure the desired outcome. In this light, Shepilov's claims that the Great Purges of the late 1930s could have been outside of Stalin's immediate control seem implausible, to say the least (p. 41).
All Stalin's deficiencies, however, pale in comparison with those of Khrushchev, the bête noire of Shepilov's memoirs. There is plenty of criticism of Khrushchev's policies, particularly in agriculture and foreign affairs. What comes across most pungently is, however, Shepilov's disdain of Khrushchev's personality and leadership style. In this respect, the book is unashamedly biased and remarkable for its omissions as much as for its revelations.
Resumo:
There is currently an urgent need to increase global food security, reverse the trends of increasing cancer rates, protect environmental health, and mitigate climate change. Toward these ends, it is imperative to improve soil health and crop productivity, reduce food spoilage, reduce pesticide usage by increasing the use of biological control, optimize bioremediation of polluted sites, and generate energy from sustainable sources such as biofuels. This review focuses on fungi that can help provide solutions to such problems. We discuss key aspects of fungal stress biology in the context of the papers published in this Special Issue of Current Genetics. This area of biology has relevance to pure and applied research on fungal (and indeed other) systems, including biological control of insect pests, roles of saprotrophic fungi in agriculture and forestry, mycotoxin contamination of the food-supply chain, optimization of microbial fermentations including those used for bioethanol production, plant pathology, the limits of life on Earth, and astrobiology.