4 resultados para Portlet-based application
Resumo:
Background
Primary angle-closure glaucoma is a leading cause of irreversible blindness worldwide. In early-stage disease, intraocular pressure is raised without visual loss. Because the crystalline lens has a major mechanistic role, lens extraction might be a useful initial treatment.
Methods
From Jan 8, 2009, to Dec 28, 2011, we enrolled patients from 30 hospital eye services in five countries. Randomisation was done by a web-based application. Patients were assigned to undergo clear-lens extraction or receive standard care with laser peripheral iridotomy and topical medical treatment. Eligible patients were aged 50 years or older, did not have cataracts, and had newly diagnosed primary angle closure with intraocular pressure 30 mm Hg or greater or primary angle-closure glaucoma. The co-primary endpoints were patient-reported health status, intraocular pressure, and incremental cost-effectiveness ratio per quality-adjusted life-year gained 36 months after treatment. Analysis was by intention to treat. This study is registered, number ISRCTN44464607.
Findings
Of 419 participants enrolled, 155 had primary angle closure and 263 primary angle-closure glaucoma. 208 were assigned to clear-lens extraction and 211 to standard care, of whom 351 (84%) had complete data on health status and 366 (87%) on intraocular pressure. The mean health status score (0·87 [SD 0·12]), assessed with the European Quality of Life-5 Dimensions questionnaire, was 0·052 higher (95% CI 0·015–0·088, p=0·005) and mean intraocular pressure (16·6 [SD 3·5] mm Hg) 1·18 mm Hg lower (95% CI –1·99 to –0·38, p=0·004) after clear-lens extraction than after standard care. The incremental cost-effectiveness ratio was £14 284 for initial lens extraction versus standard care. Irreversible loss of vision occurred in one participant who underwent clear-lens extraction and three who received standard care. No patients had serious adverse events.
Interpretation
Clear-lens extraction showed greater efficacy and was more cost-effective than laser peripheral iridotomy, and should be considered as an option for first-line treatment.
Resumo:
OBJECTIVES: To compare the ability of ophthalmologists versus optometrists to correctly classify retinal lesions due to neovascular age-related macular degeneration (nAMD).
DESIGN: Randomised balanced incomplete block trial. Optometrists in the community and ophthalmologists in the Hospital Eye Service classified lesions from vignettes comprising clinical information, colour fundus photographs and optical coherence tomographic images. Participants' classifications were validated against experts' classifications (reference standard).
SETTING: Internet-based application.
PARTICIPANTS: Ophthalmologists with experience in the age-related macular degeneration service; fully qualified optometrists not participating in nAMD shared care.
INTERVENTIONS: The trial emulated a conventional trial comparing optometrists' and ophthalmologists' decision-making, but vignettes, not patients, were assessed. Therefore, there were no interventions and the trial was virtual. Participants received training before assessing vignettes.
MAIN OUTCOME MEASURES: Primary outcome-correct classification of the activity status of a lesion based on a vignette, compared with a reference standard. Secondary outcomes-potentially sight-threatening errors, judgements about specific lesion components and participants' confidence in their decisions.
RESULTS: In total, 155 participants registered for the trial; 96 (48 in each group) completed all assessments and formed the analysis population. Optometrists and ophthalmologists achieved 1702/2016 (84.4%) and 1722/2016 (85.4%) correct classifications, respectively (OR 0.91, 95% CI 0.66 to 1.25; p=0.543). Optometrists' decision-making was non-inferior to ophthalmologists' with respect to the prespecified limit of 10% absolute difference (0.298 on the odds scale). Optometrists and ophthalmologists made similar numbers of sight-threatening errors (57/994 (5.7%) vs 62/994 (6.2%), OR 0.93, 95% CI 0.55 to 1.57; p=0.789). Ophthalmologists assessed lesion components as present less often than optometrists and were more confident about their classifications than optometrists.
CONCLUSIONS: Optometrists' ability to make nAMD retreatment decisions from vignettes is not inferior to ophthalmologists' ability. Shared care with optometrists monitoring quiescent nAMD lesions has the potential to reduce workload in hospitals.
TRIAL REGISTRATION NUMBER: ISRCTN07479761; pre-results registration.
Resumo:
Cysteine cathepsins, such as cathepsin S (CTSS), are implicated in the pathology of a wide range of diseases and are of potential utility as diagnostic and prognostic biomarkers. In previous work, we demonstrated the potency and efficiency of a biotinylated diazomethylketone (DMK)-based activity-based probe (ABP), biotin-PEG-LVG-DMK, for disclosure of recombinant CTSS and CTSS in cell lysates. However, the limited cell permeability of both the biotin and spacer groups restricted detection of CTSS to cell lysates. The synthesis and characterisation of a cell permeable ABP to report on intracellular CTSS activity is reported. The ABP, Z-PraVG-DMK, a modified peptidyl diazomethylketone, was based on the N-terminus of human cystatin motif (Leu-Val-Gly). The leucine residue was substituted for the alkyne-bearing proparcylglycine to facilitate conjugation of an azide-tagged reporter group using click chemistry, following irreversible inhibition of CTSS. When incubated with viable Human Embryonic Kidney 293 cells, Z-PraVG-DMK permitted disclosure of CTSS activity following cell lysis and rhodamine azide conjugation, by employing standard click chemistry protocols. Furthermore, the fluorescent tag facilitated direct detection of CTSS using in-gel fluorescent scanning, obviating the necessity for downstream biotin-streptavidin conjugation and detection procedures.
Resumo:
Reliability has emerged as a critical design constraint especially in memories. Designers are going to great lengths to guarantee fault free operation of the underlying silicon by adopting redundancy-based techniques, which essentially try to detect and correct every single error. However, such techniques come at a cost of large area, power and performance overheads which making many researchers to doubt their efficiency especially for error resilient systems where 100% accuracy is not always required. In this paper, we present an alternative method focusing on the confinement of the resulting output error induced by any reliability issues. By focusing on memory faults, rather than correcting every single error the proposed method exploits the statistical characteristics of any target application and replaces any erroneous data with the best available estimate of that data. To realize the proposed method a RISC processor is augmented with custom instructions and special-purpose functional units. We apply the method on the proposed enhanced processor by studying the statistical characteristics of the various algorithms involved in a popular multimedia application. Our experimental results show that in contrast to state-of-the-art fault tolerance approaches, we are able to reduce runtime and area overhead by 71.3% and 83.3% respectively.