72 resultados para Poly(methyl methacrylate) matrix


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flexible luminescent polymer films were obtained by doping europium(III) complexes in blends of poly(methyl methacrylate) (PMMA) and the ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C(6)mim][Tf2N]. Different europium(III) complexes have been incorporated in the polymer/ionic liquid matrix: [C(6)mim][Eu(nta)(4)], [C(6)mim][Eu(tta)(4)], [Eu(tta)(3)(phen)] and [choline](3)[Eu(dpa)(3)], where nta is 2-naphthoyltrifluoroacetonate, tta is 2-thenoyltrifluoroacetonate, phen is 1,10-phenanthroline, dpa is 2,6-pyridinedicarboxylate ( dipicolinate) and choline is the 2-hydroxyethyltrimethyl ammonium cation. Bright red photoluminescence was observed for all the films upon irradiation with ultraviolet radiation. The luminescent films have been investigated by high-resolution steady-state luminescence spectroscopy and by time-resolved measurements. The polymer films doped with beta-diketonate complexes are characterized by a very intense D-5(0) -> F-7(2) transition ( up to 15 times more intense than the D-5(0) -> F-7(1)) transition, whereas a marked feature of the PMMA films doped with [choline](3)[Eu(dpa)(3)] is the long lifetime of the D-5(0) excited state (1.8 ms).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Composites of multi-walled carbon nanotubes (MWCNT) of varied functionality (unfunctionalised and carboxyl and amine functionalised) with polymethyl methacrylate (PMMA) were prepared for use as a bone cement. The MWCNT loadings ranged from 0.1 to 1.0 wt.%. The fatigue properties of these MWCNT–PMMA bone cements were characterised at MWCNT loading levels of 0.1 and 0.25 wt.% with the type and wt.% loading of MWCNT used having a strong influence on the number of cycles to failure. The morphology and degree of dispersion of the MWCNT in the PMMA matrix at different length scales were examined using field emission scanning electron microscopy. Improvements in the fatigue properties were attributed to the MWCNT arresting/retarding crack propagation through the cement through a bridging effect and hindering crack propagation. MWCNT agglomerates were evident within the cement microstructure and the degree of agglomeration was dependent on the level of loading and functionality of the MWCNT. The biocompatibility of the MWCNT–PMMA cements at MWCNT loading levels upto 1.0 wt.% was determined by means of established biological cell culture assays using MG-63 cells. Cell attachment after 4 h was determined using the crystal violet staining assay. Cell viability was determined over 7 days in vitro using the standard colorimetric MTT assay. Confocal scanning laser microscopy and SEM analysis was also used to assess cell morphology on the various substrates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mixing of poly(methyl methacrylate) (PMMA) bone cement has been studied to develop methods for preparing a consistently high quality cement. A novel droplet test experimental procedure was developed that characterised the wetting characteristics involved in bone cement mixing. Using this technique it was established that increased wetting occurred by mixing bone cement at a lower temperature (-28 degreesC) than normal mixing at room temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The room temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate, [C(4)mim][PF6] was found to be an efficient plasticizer for poly( methyl methacrylate), prepared by in situ radical polymerization in the ionic liquid medium; the polymers have physical characteristics comparable with those containing traditional plasticizers and retain greater thermal stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently polymeric adsorbents have been emerging as highly effective alternatives to activated carbons for pollutant removal from industrial effluents. Poly(methyl methacrylate) (PMMA), polymerized using the atom transfer radical polymerization (ATRP) technique has been investigated for its feasibility to remove phenol from aqueous solution. Adsorption equilibrium and kinetic investigations were undertaken to evaluate the effect of contact time, initial concentration (10-90 mg/L), and temperature (25-55 degrees C). Phenol uptake was found to increase with increase in initial concentration and agitation time. The adsorption kinetics were found to follow the pseudo-second-order kinetic model. The intra-particle diffusion analysis indicated that film diffusion may be the rate controlling step in the removal process. Experimental equilibrium data were fitted to five different isotherm models namely Langmuir, Freundlich, Dubinin-Radushkevich, Temkin and Redlich-Peterson by non-linear least square regression and their goodness-of-fit evaluated in terms of mean relative error (MRE) and standard error of estimate (SEE). The adsorption equilibrium data were best represented by Freundlich and Redlich-Peterson isotherms. Thermodynamic parameters such as Delta G degrees and Delta H degrees indicated that the sorption process is exothermic and spontaneous in nature and that higher ambient temperature results in more favourable adsorption. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(methyl vinyl ether-co-maleic anhydride) formed films from aqueous formulations with characteristics that are ideal as a basis for producing a drug-containing bioadhesive delivery system when plasticized with a monohydroxyl functionalized plasticizer. Hence, films containing a novel plasticizer, tripropylene glycol methyl ether (TPME), maintained their adhesive strength and tensile properties when packaged in aluminized foil for extended periods of time. Films plasticized with commonly used polyhydric alcohols, such as the glycerol in this study, underwent an esterification reaction that led to polymer crosslinking, as shown in NMR studies. These revealed the presence of peaks in the ester/carbonyl region, suggesting that glyceride residue formation had been initiated. Given the polyfunctional nature of glycerol, progressive esterification would result in a polyester network and an accompanying profound alteration in the physical characteristics. Indeed, films became brittle over time with a loss of both the aqueous solubility and bioadhesion to porcine skin. In addition, a swelling index was measurable after 7 days, a property not seen with those films containing TPME. This change in bioadhesive strength and pliability was independent of the packaging conditions, rendering the films that contain glycerol as unsuitable as a basis for topical bioadhesive delivery of drug substances. Consequently, films containing TPME have potential as an alternative formulation strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of the poly(ethylene glycol) (PEG) plasticizer content and molecular weight on the physicochemical properties of films cast from aqueous blends of poly(methyl vinyl ether-co-maleic acid) (PMVE/MA) was investigated with tensile mechanical testing, thermal analysis, and attenuated total reflectance/Fourier transform infrared spectroscopy. Unplasticized films and those containing high copolymer contents were very difficult to handle and proved difficult to test. PEG with a molecular weight of 200 Da was the most efficient plasticizer. However, films cast from aqueous blends containing 10% (w/w) PMVE/MA and either PEG 1000 or PEG 10,000 when the copolymer/plasticizer ratio was 4 : 3 and those cast from aqueous blends containing 15% (w/w) PMVE/MA and either PEG 1000 or PEG 10,000 when the copolymer/plasticizer ratio was 2 : 1 possessed mechanical properties most closely mimicking those of a formulation we have used clinically in photodynamic therapy. Importantly, we found previously that films cast from aqueous blends containing 10% (w/w) PMVE/MA performed rather poorly in the clinical setting, where uptake of moisture from patients' skin led to reversion of the formulation to a thick gel. Consequently, we are now investigating films cast from aqueous blends containing 15% (w/w) PMVE/MA and either PEG 1000 or PEG 10,000, where the copolymer/plasticizer ratio is 2 : 1, as possible Food and Drug Administration approved replacements for our current formulation, which must currently be used only on a named patient basis as its plasticizer, tripropylene glycol methyl ether, is not currently available in pharmaceutical grade

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly (methyl methacrylate) (PMMA) bone cement—multi walled carbon nanotube (MWCNT) nanocomposites with weight loadings ranging from 0.1 to 1.0 wt% were prepared. The MWCNTs investigated were unfunctionalised, carboxyl and amine functionalised MWCNTs. Mechanical properties of the resultant nanocomposite cements were characterised as per international standards for acrylic resin cements. These mechanical properties were influenced by the type and wt% loading of MWCNT used. The morphology and degree of dispersion of the MWCNTs in the PMMA matrix at different length scales were examined using field emission scanning electron microscopy. Improvements in mechanical properties were attributed to the MWCNTs arresting/retarding crack propagation through the cement by providing a bridging effect and hindering crack propagation. MWCNTs agglomerations were evident within the cement microstructure, the degree of these agglomerations was dependent on the weight fraction and functionality of MWCNTs incorporated into the cement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

he influence of poly(ethylene glycol) (PEG) plasticiser content and molecular weight on the physicochemical properties of films cast from aqueous blends of poly(methyl vinyl ether-co-maleic acid) was investigated using thermal analysis, swelling studies, scanning electron microscopy (SEM) and attenuated total reflectance (ATR)-Fourier transform infrared (FTIR) spectroscopy. FTIR spectroscopy revealed a shift of the CO peak from 1708 to 1731 cm-1, indicating that an esterification reaction had occurred upon heating, thus producing crosslinked films. Higher molecular weight PEGs (10,000 and 1000 Da, respectively), having greater chain length, producing hydrogel networks with lower crosslink densities and higher average molecular weight between two consecutive crosslinks. Accordingly, such materials exhibited higher swelling rates. Hydrogels crosslinked with a low molecular weight PEG (PEG 200) showed rigid networks with high crosslink densities and, therefore, lower swelling rates. Polymer:plasticizer ratio alteration did not yield any discernable patterns, regardless of the method of analysis. The polymer–water interaction parameter (?) increased with increases in the crosslink density. SEM studies showed that porosity of the crosslinked films increased with increasing PEG MW, confirming what had been observed with swelling studies and thermal analysis, that the crosslink density must be decreased as the Mw of the crosslinker is increased. Hydrogels containing PMVE/MA/PEG 10,000 could be used for rapid delivery of drug, due to their low crosslink density. Moderately crosslinked PMVE/MA/PEG 1000 hydrogels or highly crosslinked PMVE/MA/PEG 200 systems could then be used in controlling the drug delivery rates. We are currently evaluating these systems, both alone and in combination, for use in sustained release drug delivery devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An iron prophyrin complex has been immobilized on the surfaces of platinum, silver, and indium doped-tin oxide coated glass by using the poly(gamma-ethyl L-glutamate)-N-(3-aminopropyl)imidazole derivative 1 as a linking agent, thus allowing-the surface-enhanced resonance Raman and UV-VIS absorption spectra and electrochemical properties of the porphyrin to be studied in solvents in which it is not normally soluble.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A homologous family of dialkyl phthalates has been used to investigate the effect of plasticizer/polymer compatibility on the response characteristics of transparent, plastic, thin optical gas sensing films for CO2 and oxygen. Plasticizer/polymer compatibilities were determined through the value of the difference in solubility parameter, i.e. Delta delta, for the plasticizer and polymer with a Delta delta value of zero indicating high compatibility. A strong correlation was found between plasticizer/polymer compatibility and sensitivity in phenol red/ethyl cellulose CO2-sensitive films and this relationship extended to CO2-sensitive films based on other polymers such as polystyrene and poly(methyl methacrylate). It extended also to optical O-2-sensitive films implying that the relationship is general for thin-film optical sensors. Other results from the CO2-sensitive films in different polymers indicated that the film sensitivity is largely independent of the polymer matrix regardless of its inherent gas permeability, when a sufficient quantity of compatible plasticizer is present. (C) 1998 Elsevier Science B.V.